Querido Eduard Punset:
Sé que no va a leer esto. Ni me importa. Es más bien un pequeño desahogo, para dejarme la mente tranquila. Todo viene a raíz de este artículo suyo: “La felicidad no está necesariamente donde uno espera“ y otros artículos suyos similares donde nombra el principio de incertidumbre de Heisenberg para justificar los ¿argumentos? más absurdos.
La validez de la mecánica y la física cuánticas se basa, como cualquier teoría científica, en la precisión de sus predicciones. La física cuántica estudia fenómenos que suceden en sistemas microscópicos como los átomos. No podemos percibir estos efectos en objetos macroscópicos: la dualidad onda-partícula sirve para describir un electrón, pero una pelota de tenis la podemos tratar como una partícula.
La validez de esta teoría está en sus resultados, capaces de explicar (por ejemplo) los espectros de emisión y absorción característicos de cada elemento:
Deje de mezclar la mecánica cuántica con conceptos como “el futuro es incierto”, “la felicidad” o “no podemos prever lo que va a ocurrir en el futuro”. ¿Por qué? Por dos razones:
Por eso me va a permitir que funde una pequeña asociación: PFDPMMPIH. Plataforma de Físicos Damnificados por Punset y su Manía de Malinterpretar el Principio de Incertidumbre de Heisenberg. No hay carnet de miembro, ni cuota. Pero seguro que retrata la sensación que tenemos muchos físicos al oírle hablar (si es así, podéis decirlo en los comentarios). Por favor, deje de utilizar la cuántica para justificar cualquier cosa. Los físicos (y estudiantes de física, como yo) se lo agradecerán enormemente.
Fuente: Mirando Musarañas
Schrödinger y Heisenberg iban conduciendo un coche por la autopista cuando un policía los detuvo.
Caminó hacia la ventanilla y le pregunta: “Señor, ¿sabe usted a la velocidad que iba?
Heisenberg le responde: “No, pero sé exactamente dónde estaba”.
El policía, pensando que una respuesta tan extraña merecía ampliar la investigación le pide a Heisenberg que abra el maletero del carro. Mira dentro y ve un gato muerto.
“¡¿Sabía usted que hay un gato muerto aquí dentro?!”, le grita.
Schrödinger le contesta: “¡Bueno, pues ahora lo sé!”
Cincuenta años después de que se predijera su existencia, los científicos finalmente han vislumbrado el esquivo bosón de Higgs. La partícula se cree que es el eslabón perdido en el modelo estándar de la física de partículas, pero ¿por qué completa el rompecabezas?
En este video, el animador Henry Reich explica el papel fundamental del bosón de Higgs, lo que ilustra la forma en que da a otras partículas su masa y por qué es un componente clave en nuestro modelo de la fuerza nuclear débil.
Para animaciones sobre física, y vídeos adicionales sobre el bosón de Higgs, echa un vistazo a el canal de Física minuto. Si te ha gustado este post, por qué el descubrimiento de Higgs podría abrir la supersimetría o averiguar por qué los planetas sólo pueden orbitar en 3D.
La criptografía cuántica es la criptografía que utiliza principios de la mecánica cuántica para garantizar la absoluta confidencialidad de la información transmitida. Las actuales técnicas de la criptografía cuántica permiten a dos personas crear, de forma segura, una clave secreta compartida que puede ser usada como llave para cifrar y descifrar mensajes usando métodos de criptografía simétrica. La criptografía cuántica como idea se propuso en la década de los años 1970, pero no es hasta 1984 que se publica el primer protocolo.Una de las propiedades más importantes de la criptografía cuántica es que si un tercero intenta hacer eavesdropping durante la creación de la clave secreta, el proceso se altera detectándose al intruso antes de que se trasmita información privada. Esto es una consecuencia del principio de incertidumbre de Heisenberg, que nos dice que el proceso de medir en un sistema cuántico perturba dicho sistema.&
La seguridad de la criptografía cuántica descansa en las bases de la mecánica cuántica, a diferencia de la criptografía de clave pública tradicional la cual descansa en supuestos de complejidad computacional no demostrada de ciertas funciones matemáticas.La criptografía cuántica está cercana a una fase de producción masiva, utilizando láseres para emitir información en el elemento constituyente de la luz, el fotón, y conduciendo esta información a través de fibras ópticas.
La mecánica cuántica describe la dinámica de cada partícula cuántica (fotones, electrones, etc.) en términos de estados cuánticos, asignando una probabilidad a cada posible estado de la partícula por medio de una función. La herramienta de Gisin (quantum cryptography), depende de la física cuántica aplicada a dimensiones atómicas y puede transmitir información de tal forma que cualquier intento de descifrar o escuchar será detectado. Esto es especialmente relevante en un mundo donde cada vez más se utiliza el Internet para gestionar temas. Según Gisin, «comercio electrónico y gobierno electrónico solo serán posibles si la comunicación cuántica existe». En otras palabras, el futuro tecnológico depende en gran medida de la «ciencia de los secretos».
Fuente: La Ciencia Insólita