admin

Categorías

Coobis

Ordenador cuántico

Ordenadores cuánticos, los cubits

Fuente:  LIMONCELLO DIGITAL

Entrevista a Gerhard Rempe sobre la fascinación y las perspectivas de la tecnología de la información cuántica

Actualidad Informática. Internet cuántica. Rafael Barzanallana

Gerhard Rempe, Director del Instituto Max Planck de Óptica Cuántica en Garching, y sus colegas investigan los fundamentos de la tecnología de la información cuántica.

Los investigadores han aprendido a controlar átomos individuales  y fotones, o partículas de luz, y las interacciones entre los dos de una manera muy precisa. Atrapan átomos individuales en resonadores que están esencialmente compuestos por dos muy  buenos espejos. Al traer fotones para interactuar con un átomo en el resonador, almacenan información en el átomo en forma de bits individuales, se lee el bit de nuevo y se transfiere a otro átomo. Recientemente, incluso vincularon lógicamente un átomo con un fotón y así ejecutaron un paso fundamental en la computación cuántica.

Profesor Rempe, ¿cómo explicó su trabajo a sus hijos cuando eran jóvenes?

Gerhard Rempe: Fue muy difícil. Podía casi llegar al estado de superposición, donde una partícula cuántica puede existir en dos estados al mismo tiempo antes de que se midieron sus propiedades. Pero no llegué muy lejos con el entrelazamiento de dos partículas. Traté de demostrar el efecto con los dados.

¿Puede intentarlo de nuevo para nosotros?

Con un dado, los números en los lados opuestos siempre suman siete. El seis es opuesta al uno, por ejemplo. Así que si veo un número, yo sé de inmediato el otro. Existe una situación similar cuando mido las propiedades de las partículas entrelazadas. Lo más loco sobre el entrelazamiento es que el resultado de una medición depende también del tipo de medición – decimos que podemos girar la base. Tal vez es más fácil si usted se imagina que fuera a poner su cabeza a un lado para que  pueda ver simultáneamente algo de los números en los lados opuestos. Esto lleva a un nuevo, «número» girado, cuyo «homólogo» siempre gira automáticamente con él. Pero es posible que note que es muy difícil de explicar esto con analogías. La física cuántica no es ilustrativa, ya que nuestras ideas se caracterizan por la vida cotidiana y la física cuántica no se aplica aquí.

Probablemente uno tiene que aceptar que su trabajo excede el poder de la imaginación de muchas personas. Pero no es sólo el concepto de su investigación lo que es difícil de entender. Sus experimentos también parecen ser técnicamente inconcebibles. Después de todo, se trabaja con átomos individuales y fotones individuales.

Hoy en día, puedo decir que no es difícil, porque ahora podemos hacerlo. Pero empecé en esto hace 20 años. Y en retrospectiva, tiene razón: hemos tenido que recorrer un camino largo, pero emocionante hasta conseguir el control de las partículas individuales y muy diferentes, tales como átomos y fotones. Y también tenía que disponer de grandes cantidades de tecnologías. Cuando la investigación se desarrolla durante un tiempo tan largo es fantástico estar en la Sociedad Max Planck, porque aquí es posible llevar a cabo proyectos de investigación a largo plazo y saber que la financiación es segura.

La perseverancia, obviamente, dio sus frutos.

En las conferencias escuchamos comentarios apreciativos otra vez. Sin embargo, algunos estudiantes de doctorado que nos gustaría asumir tienen miedo de unirse a nosotros, porque nuestros experimentos son demasiado exigentes para ellos. Para otros, es precisamente este aspecto que es más atractivo, por supuesto.

¿Qué problemas tuvo que superar para poder controlar esas pequeñas partículas como los átomos y los fotones?

Cuidado: los átomos pueden ser extremadamente pequeños, pero nuestros fotones no lo son ciertamente. Se extienden sobre varios cientos de metros, pero se mueven muy rápido, por supuesto. Debido a que se extienden sobre un espacio tan grande, podemos optar por su frecuencia, es decir, su color, con extrema precisión.

Esta es otra característica de los objetos cuánticos que toma algún tiempo para acostumbrarse, el hecho de que no todas sus propiedades se pueden determinar con la mejor precisión posible. ¿Puede decirnos algo sobre otros desafíos en sus experimentos?

Una trampa mantiene nuestros átomos entre dos espejos que están muy cerca uno del otro. En un principio, los espejos estaban siempre en nuestro camino cuando queríamos llegar al átomo con rayos láser para enfriar o influir en su estado.

¿Cómo resolver este problema?

Hemos desarrollado técnicas de enfriamiento especiales para esto, por ejemplo. Existen algunos métodos de enfriamiento de átomos en el espacio libre. Esta fue una de las cosas por las que David Wineland recibió el Premio Nobel 2012 de Física, por ejemplo. Nosotros, en cambio, tenemos en cuenta las propiedades de radiación especiales del átomo en el resonador, que son diferentes a las de espacio libre. El átomo se ve entre los espejos tal vez un millón de veces. Aprovechamos esta para enfriar el átomo.

¿Por qué estás interesado en el sistema de un átomo en un resonador?

Hay dos razones para esto. Por un lado, soy realmente un físico de láser. He construido un láser como parte de mi tesis. ¿Y qué es un láser? Un medio entre dos espejos que se excita y que amplifica la luz. En algún momento me pregunté cuáles son los límites que estaban aquí. ¿Puedo construir un láser de un átomo entre dos espejos? En realidad, nadie ha tenido éxito en hacer esto hasta ahora. Un problema es que cuanto más reduzco el número de átomos entre los espejos, estos espejos tienen que ser mejores.

¿Y la segunda razón?

Si trabajo con un sistema tan simple que consta de sólo un átomo y un fotón con una frecuencia con una polarización y una longitud de onda, puedo investigar muchas cuestiones fundamentales. Se podría pensar que no pasa mucho en un sistema tan simple, pero en realidad hay mucho que hacer.

¿Y lo que realmente sucede?

Lo más importante es que la interacción entre la luz y la materia se convierte en no lineal. Si las interacciones fueron lineales, el átomo simplemente reaccionaría dos veces tan intensamente con el doble de la intensidad de la luz, por ejemplo. Pero este no es el caso para un átomo individual. Si ofrezco al átomo un fotón, que es absorbida por el átomo. El átomo hace la transición desde el estado fundamental a un estado excitado. Si el segundo fotón llega ahora, el átomo ya no puede absorberlo, puesto que ya está excitado. Sólo se puede emitir. Así que lo que originalmente era un absorbedor se ha convertido en un emisor. Por lo tanto, un único fotón puede girar completamente alrededor de las propiedades de radiación de un medio que consta de un solo átomo. Esto no es posible con un medio que consta de muchos átomos, por supuesto. Desde este punto de vista, una reducción de las partículas individuales no es una limitación, sino una oportunidad. Debido a que un átomo y un fotón se comunican mucho más intensamente entre sí.

¿Qué papel juega el resonador en este proceso?

Sin el resonador que sería imposible para mí golpear al átomo correctamente. El átomo es mucho más pequeño que un haz de luz, incluso si enfoco a un nivel óptimo. Esto hace que sea muy poco probable que el fotón se reúna con el átomo y que los dos iniciaran un diálogo intenso. El fotón se refleja una y otra vez entre los espejos, de modo que la probabilidad de que el fotón interactúe con el átomo se incrementa considerablemente.

Los obstáculos experimentales en su investigación son obviamente difícil de superar. ¿Cuál es su objetivo a largo plazo?

El camino que tomamos no siempre correr en línea recta, a veces miramos a la izquierda y la derecha. Es como estar en las montañas, donde a veces es también posible la deriva en todo el paisaje hermoso distanciándose de la ruta real.

¿Y el ordenador cuántico es el pico?

La gente siempre mencionan la computadora cuántica, no sé por qué. Es sólo una de las posibilidades que la tecnología de la información cuántica nos proporciona. Todavía no tenemos ni idea de si y cuándo habrá uno.

Entonces, ¿cuál es su objetivo alternativa?

No queremos calcular, sino comunicamos. Mi objetivo es a largo plazo es una internet cuántica que tenga una alta capacidad, se extienda por grandes distancias y no sea susceptible a la escucha, de modo que la NSA ya no pueda escuchar, por ejemplo.

Ellos están probablemente muy interesados ??en la computación cuántica … 

Debido a que un ordenador cuántico puede romper rápidamente cifrados clásicos. Pero no se puede hacer esto con la criptografía cuántica sin que alguien se diera cuenta de lo que están haciendo. Es incluso posible comprar la criptografía cuántica en la actualidad, pero funciona sólo en unos pocos kilómetros y sólo entre dos partes. Nuestro sistema híbrido usando un fotón y un átomo en un resonador hace que sea posible la transmisión de información cuántica segura a través de grandes distancias y también para la comunicación entre varias partes.

¿De qué manera es su sistema especialmente adecuado para esto?

Por un lado, necesito fotones. Ellos son los únicos posibles portadores de información a través de grandes distancias, porque no puedo empacar realmente mi átomo en una maleta y llevarlo del punto A al B. Los fotones son buenos para la transferencia, pero lamentablemente siempre se pierden. Por lo tanto necesito  amplificar la información si quiero enviarla a lo largo de grandes distancias. Pero no puedo ampliar la información cuántica como la información clásica. Es por eso que necesito un repetidor cuántico …

Un amplificador que mantiene el carácter cuántico de la información.

Exactamente, y para esto entonces necesito un dispositivo de almacenamiento cuántico, y nuestros átomos representan la mejor forma posible de lograrlo. Estos dispositivos de almacenamiento cuántico serían importantes no sólo para el repetidor cuántico, sino también para otras muchas  aplicaciones.

¿Cuál es su pensamiento en la actualidad, por ejemplo?

Tal dispositivo de almacenamiento es muy importante si quiero establecer una conexión entre tres o más partes en donde la sincronización es crucial. Si yo sólo quiero transmitir información de A a B, todo funciona de forma secuencial. Pero si un tercero está involucrado, lo que necesita es saber cuando se debe transmitir su información. Hasta entonces tiene que aferrarse a la información, y para ello se necesita un dispositivo de almacenamiento . Estas conexiones entre varios socios son comunes en internet. Así que la palabra clave es la escalabilidad.

La posibilidad de combinar muchos sistemas que trabajan en una pequeña escala a un sistema más grande.

Precisamente! Un sistema es escalable si las dificultades técnicas para la expansión aumentan sólo linealmente, mientras que las posibilidades aumentan exponencialmente. El potencial de los sistemas entrelazados para la computación cuántica, por ejemplo, sólo puede ser agotado completamente en sistemas más grandes. Algunas propuestas para un ordenador cuántico no son escalables, sin embargo.

¿Puede dar un ejemplo de esto?

Al organizar los iones en una cadena, que ya ha producido puertas lógicas cuánticas, en otras palabras,  operaciones lógicas. Esto ha sido posible con hasta 14 iones hasta ahora. Pero si me dirijo a un ion en un extremo de la cadena, tengo que transportar la información de este a través de toda la cadena con el fin de enviarlo al otro extremo.

Cuanto más larga sea la cadena, más fácil es que la información se pierda.

Eso es correcto. Tal vez sea posible añadir un átomo más, al igual que siempre se puede incluir otro pañuelo en una maleta. Pero en algún momento, eso es todo. Este sistema, por lo tanto no es escalable. Nuestro sistema es escalable en contraste.

Por tanto, es teóricamente posible combinarlo con sí mismo tantas veces como lo desee. ¿Podemos ya prever cuándo vamos a tener una internet cuántica que no pueda ser interceptada?

Eso es difícil. La historia del mundo no sigue una línea recta. Si hay una sorpresa de mañana, todos podemos estar haciendo algo diferente el día después de mañana. Esto no es un desastre, porque en la investigación básica sobre todo estamos buscando las sorpresas – que en realidad sería aburrida sin ellas. Así que mi conclusión es: vamos a esperar y ver!

Fuente: Peter Hergersberg. Interview with Gerhard Rempe about the fascination of and prospects for quantum information technology Read more at: http://phys.org/news/2014-04-gerhard-rempe-fascination-prospects-quantum.html#jCp. http://phys.org/news/2014-04-gerhard-rempe-fascination-prospects-quantum.html (accessed 2014/04/17).

Tecnologías para la computación cuántica

Actualidad Informática. Tecnologías para la computación cuántica. Rafael Barzanallana

Hay hasta 18 tecnologías que están siendo investigados para la computación cuántica. Cada una tiene sus ventajas y limitaciones. El grupo de Blatt está trabajando en un qubit basado en una transición óptica de iones atrapados de calcio 40.

Los qubits de iones atrapados «tienen propiedades de coherencia exquisitas, se pueden preparar y medir con eficiencia cercana al 100 %, y se entrelazan fácilmente unos con otros a través de la interacción de Coulomb o interconexiones fotónicas remotas», escribe Chris Monroe del Joint Quantum Institute en Science. Su grupo está utilizando iones de iterbio, otros  investigadores están estudiando otros iones atrapados. Tanto los grupos de Innsbruck y JQI han escalado experimentos para 15 o 16 qubits, a medio camino de los 30 qubits que Monroe dice que se necesitan para simular el comportamiento de un sistema mecánico-cuántico que son demasiado complejos para las computadoras digitales actuales.

Otros tipos de qubits pueden ser mejores para otros tipos de operaciones, dice Klaus Ensslin del Instituto Federal Suizo de Tecnología ( ETH, Zurich, Suiza). Investigadores suizos están estudiando muchos tipos de qubits para aplicaciones potenciales. Una preocupación es el corto tiempo de vida de los estados cuánticos con respecto al mundo exterior. » Para hacer funcionar un ordenador cuántico, se debe aislar el sistema cuántico de su entorno, pero también hay que leerlo», dice Ensslin. El espín de un solo electrón en un punto cuántico es atractivo porque se acopla débilmente a su entorno. Los qubits de puntos cuánticos son difíciles de manipular, pero dice que su gran atractivo es la posible facilidad de escalado en nanoestructuras semiconductoras. Otros están estudiando enfoques donde la protección es topológica –  ingeniería cuántica para mejorar la coherencia y reducir el ruido.

Otros tipos de tecnología de la computación cuántica son:

• Los átomos neutros y moléculas con estados internos de larga duración, se enfrían, atrapan y entrelazan para crear qubits.
• Circuitos de unión Josephson superconductoras.
• Medición óptica de los estados cuánticos de los fotones.
• Efectos de resonancia magnética nuclear

El modelo clásico del ordenador supuestamente cuántico de D-Wave

Obvio, pero hay que repetirlo. Si el tiempo de decoherencia de un cubit individual es menor que el tiempo de ejecución de un algoritmo que utilice cientos de estos cubits, entonces el algoritmo ejecutado es clásico, aunque use cubits. Umesh Vazirani (UC Berkeley, EEUU) y varios colegas han construido un modelo clásico de la máquina de D-Wave que explica todas sus ventajas “cuánticas” (sus suspuestas correlaciones cuánticas no locales entre cubits lejanos). Un modelo (clásico) de campo medio efectivo que aproxima el algoritmo de recocido cuántico. Malas noticias para D-Wave que pronto verá como se cae su castillo de naipes. El artículo técnico es Seung Woo Shin, Graeme Smith, John A. Smolin, Umesh Vazirani, “How “Quantum” is the D-Wave Machine?,” arXiv:1401.7087 [quant-ph], 28 Jan 2014.

En el nuevo modelo clásico, cada cubit en la máquina de D-Wave se reemplaza por un imán cuya dirección está en el plano XZ; el acoplo entre cubits se simula por una interacción dipolo-dipolo entre los imanes vecinos; y el efecto del recocido cuántico se simula mediante un campo magnético externo cuya intensidad se atenúa. Lo más interesante del nuevo modelo clásico no es que simula las correlaciones “cuánticas” no locales observadas en la máquina de D-Wave, sino que además muestra que su comportamiento está controlado por un número pequeño de cubits “efectivos” llamados supernodos (que determinan el número de puntos de equilibrio del modelo). El algoritmo “cuántico” con 108 cubits publicitado el año pasado por D-Wave (parte izquierda de la figura) equivale a un algoritmo clásico con sólo 16 supernodos (parte derecha de dicha figura).

Actualidad Informática. El modelo clásico del ordenador supuestamente cuántico de D-Wave. Rafael Barzanallana

Ampliar en:  La Ciencia de la Mula Francis

La ciencia nos abre los ojos, pero no tiene que ver con que dios exista o deje de existir

Actualidad Informática. Ignacio Cirac. Rafael BarzanallanaEl físico Juan Ignacio Cirac (Manresa, 1965) forma parte de esa brillante saga de científicos empeñados en completar el guion del universo. Su problema es que en esta ambiciosa superproducción cuántica, a diferencia de otras ciencias que tratan de abrir camino hacia el futuro, el tiempo de la historia deviene hacia el pasado más remoto. Como Christopher Nolan en la película Memento, los físicos están reconstruyendo a ciegas un argumento que en este caso dura trece mil millones de años. Y nadie está seguro de que se pueda llegar a conocer el principio de la mayor historia jamás contada, el Big Bangel punto exacto en que la física cuántica más sólida se torna volátil metafísica, la pregunta ante la cual el ser humano se encoge todavía de hombros, el lugar donde habita el olvido que cantan los poetas.

Lo expresaba muy bien Max Planck, el científico alemán que da nombre al instituto tecnológico cuya división teórica dirige Cirac desde 2001. «La ciencia es incapaz de resolver los últimos misterios de la naturaleza, porque en el último análisis nosotros mismos somos parte de la naturaleza, es decir, del misterio que tratamos de resolver». A la espera de las sorpresas que pueda deparar el estudio de la materia oscura, la gran desconocida en la ecuación del universo, el hallazgo del bosón de Higgs representa, hasta la fecha, el mayor acercamiento a la comprensión del origen de todo.

No obstante, la física cuántica se ocupa también de asuntos terrenales. Uno de ellos la computación cuántica, disciplina en la que Juan Ignacio Cirac ha destacado en las últimas dos décadas hasta el punto de postularse como ganador del Nobel de Física, sobre todo después de haber obtenido este año el premio Wolf, antesala de los premios de la academia sueca.

Desde que el español demostró la posibilidad teórica de construir ordenadores cuánticos, en el mundo se ha iniciado uno de los procesos de transferencia tecnológica más relevantes de nuestro tiempo, el camino hacia la segunda revolución cuántica de la historia, una carrera donde está en juego el dominio de las comunicaciones y la industria informática del futuro. El científico acaba de visitar Madrid para participar como jurado, en la categoría de ciencias básicas, en los premios Fronteras del Conocimiento, de la Fundación BBVA, y esta vez concede a Teknautas su única entrevista en España antes de regresar a Alemania.

P.: Muchos científicos prestigiosos, desde Einstein a Max Planck, han recurrido a símiles donde aparece Dios para explicar los límites de la ciencia. ¿Tiene la física, en último extremo, algo de místico?

R.: La ciencia no tiene nada que ver con lo místico, son dos cosas completamente separadas. Otra cosa distinta es que algunas religiones tienen ideas equivocadas bajo los ojos de la ciencia, y entonces la ciencia lo dice. Por ejemplo, hace trescientos años se pensaba que la Tierra, el universo incluso, tenía seis mil años. Hoy sabemos que tiene muchos más: trece mil millones. La ciencia nos va abriendo los ojos, pero eso no quiere decir ni que exista Dios ni que deje de existir, ni que sea de una manera o de otra.

Entrevista completa en:  Teknautas

cocinas las palmas
crematorio animales
reformas integrales zaragoza
servicios de tutorias
viajes a india y nepal

La Mecánica Cuántica y sus aplicaciones: el ordenador cuántico

Interesante documental que explica de forma sencilla y resumida cómo surgió la Física Cuántica y cómo a partir de ésta se desarrolló la Mecánica Cuántica. Sin necesidad de recurrir a las matemáticas propias del formalismo cuántico, se explican puntos clave como el concepto de dualidad onda-corpúsculo, la superposición de estados cuánticos (ilustrada mediante el famoso experimento pensado del gato de Schrödinger), el concepto de entrelazamiento o «entanglement», la paradoja EPR (Einstein-Podolsky-Rosen) y el experimento de Alain Aspect. La parte final del documental se centra en la computación cuántica, presentando el concepto de qbit (quantum bit o bit cuántico) y dando una idea de la revolución que supondría la construcción del ordenador cuántico en el ámbito de la encriptación.

Detección cuántica no destructiva de un solo fotón

Actualidad Informática. Detección cuántica no destructiva de un solo fotón. Rafael Barzanallana. UMU

Albert Einstein recibió el Premio Nobel por explicar el efecto fotoeléctrico como un proceso de absorción y aniquilación de fotones. Todo detector de un solo fotón aniquila dicho fotón impidiendo medidas repetidas del mismo fotón. Parece imposible diseñar un detector no destructivo de fotones, sin embargo, Andreas Reiserer (Instituto Max Planck de Óptica Cuántica, Garching, Alemania) y dos colegas han logrado lo imposible gracias a acoplar el estado del fotón con un átomo de rubidio-87 atrapado en una cavidad óptica y medir dicho átomo para deducir la presencia del fotón o su ausencia mediante fluorescencia. El nuevo método tiene una eficiencia del 74%, que se puede incrementar utilizando medidas repetidas en sucesión sobre el mismo fotón (dos medidas subirían la eficiencia al 87% y tres medidas hasta el 89%). Se esperan muchas aplicaciones en metrología cuántica, computación cuántica, comunicación cuántica e incluso en la futura web cuántica. El artículo técnico es Andreas Reiserer, Stephan Ritter, Gerhard Rempe, “Nondestructive Detection of an Optical Photon,” Science, AOP 14 Nov 2013 (arXiv:1311.3625 [quant-ph]).

Ampliar en: La Ciencia de la Mula Francis

Teleportación cuántica de fotones

Actualidad Informática. Teleportación cuántica de fotones. Rafael Barzanallana. UMU

Gracias a una tecnología híbrida, es posible realizar una transmisión muy fiable de bits cuánticos fotónicos, como se ha demostrado en un experimento cuyos resultados han sido analizados cuidadosamente.Mediante el entrelazamiento cuántico de campos de luz separados en el espacio, unos investigadores japoneses y alemanes han conseguido teleportar qubits (bits cuánticos) fotónicos con notable fiabilidad. Esto significa que se ha logrado dar un paso decisivo una década y media después de los primeros experimentos en el campo de la teleportación óptica. El éxito del experimento llevado a cabo en la ciudad japonesa de Tokio es atribuible al uso de una técnica híbrida en la cual se han combinado dos enfoques tecnológicos conceptualmente distintos y que antes se consideraban del todo incompatibles.En la teleportación cuántica se transfieren estados cuánticos arbitrarios desde un emisor, a quien aquí podemos referirnos como Isabel, hasta un receptor, a quien podemos llamar Miguel, que está alejado en el espacio. Esto requiere que Isabel y Miguel inicialmente compartan un estado de entrelazamiento cuántico a través del espacio que les separa, un entrelazamiento cuántico que puede por ejemplo estar en la forma de fotones entrelazados cuánticamente.

La teleportación cuántica es de importancia fundamental para el procesamiento de información cuántica (la base de la computación cuántica) y la comunicación cuántica. Los fotones son particularmente valiosos como portadores de información ideales para la comunicación cuántica, ya que se les puede usar para transmitir señales a la velocidad de la luz. Un fotón puede representar un bit cuántico, al que se llama abreviadamente «qubit» y que es comparable a un dígito binario (bit) de un sistema clásico de procesamiento de información.

Los primeros intentos de teleportar fotones (partículas de luz) individuales fueron realizados por el físico austriaco Anton Zeilinger. Desde entonces, se han realizado varios experimentos relacionados con este concepto. Sin embargo, la teleportación de bits cuánticos fotónicos utilizando métodos convencionales ha demostrado tener limitaciones debido a deficiencias experimentales y dificultades con principios fundamentales.

En la teleportación cuántica determinista de un bit cuántico fotónico, cada qubit que vuela desde la izquierda y hacia dentro del teleportador, sale de éste por el lado derecho y con una pérdida de calidad de tan sólo un 20 por ciento, un valor que no se puede alcanzar bajo condiciones clásicas, o sea sin entrelazamiento cuántico.
Lo que hace que el experimento realizado en Tokio sea tan diferente es el uso de una técnica híbrida. Con su ayuda se ha logrado la teleportación cuántica completamente determinista, y de fiabilidad bastante buena, de qubits fotónicos. La precisión de la transferencia fue de entre un 79 y un 82 por ciento para cuatro qubits diferentes. Además, se teleportaron los qubits con una eficiencia mucho mayor que en experimentos anteriores, incluso con un grado bajo de entrelazamiento cuántico.El concepto de entrelazamiento cuántico fue formulado por primera vez por Erwin Schrödinger, y describe una situación en la que dos sistemas cuánticos, como por ejemplo dos partículas de luz, están en un estado conjunto, por lo que sus comportamientos son mutuamente dependientes a un nivel mayor del que es posible normalmente (bajo condiciones clásicas). En el experimento de Tokio, se consiguió el entrelazamiento continuo mediante la estrategia de entrelazar muchos fotones en «parejas». Los experimentos previos sólo tuvieron un fotón entrelazado cuánticamente con otro fotón, una solución menos eficiente.»El entrelazamiento de fotones funcionó muy bien en el experimento realizado en Tokio, prácticamente al pulsar un botón, tan pronto como el láser se encendía», destaca el profesor Peter van Loock de la Universidad Johannes Gutenberg en Maguncia, Alemania. Como físico teórico, van Loock asesoró a los físicos experimentales del equipo de investigación dirigido por el profesor Akira Furusawa, de la Universidad de Tokio, sobre cómo podían realizar más eficientemente el experimento de teleportación para poder lograr el éxito de la teleportación cuántica. Este entrelazamiento continuo se logró con la ayuda de «luz comprimida».

Fuente: resolviendo.co

Ordenadores cuánticos, la confianza es buena y la prueba es mejor

Actualidad Informática. Ordenadores cuánticos, la confianza es buena y la prueba es mejor. Rafael Barzanallana. UMU

Un ordenador cuántico puede resolver tareas en las que falla un ordenador clásico. La cuestión de cómo se puede, sin embargo, comprobar la fiabilidad de una computadora cuántica fue respondida recientemente en un experimento en la Universidad de Viena. Las conclusiones se publican en la revista científica Nature Physics.

El aprovechamiento de los fenómenos cuánticos, como la superposición y el entrelazamiento, representa una gran promesa para construir futuros superordenadores utilizando la tecnología cuántica. Una gran ventaja de este tipo de ordenadores cuánticos es que son capaces de realizar una variedad de tareas mucho más rápido que sus homólogos convencionales. El uso de los ordenadores cuánticos para estos fines plantea un reto importante: ¿cómo se pueden verificar los resultados proporcionados por un ordenador cuántico?

Solo recientemente los desarrollos teóricos han proporcionado métodos para poner a prueba un ordenador cuántico sin tener un ordenador cuántico adicional a mano. Un equipo de investigación internacional en torno a Philip Walther en la Universidad de Viena ha demostrado ahora un protocolo nuevo, donde los resultados computacionales cuánticos pueden ser verificadas sin necesidad de utilizar los recursos informáticos cuánticos adicionales.

Trampas para un ordenador cuántico

Con el fin de probar los ordenadores cuánticos los científicos insertaron «trampas» en las tareas. Las trampas son cálculos intermedios cortos de los que el usuario sabe el resultado de antemano. En caso de que el ordenador cuántico no haga su trabajo correctamente la trampa entrega un resultado que difiere del esperado. «De esta manera, el usuario puede verificar el grado de fiabilidad del ordenador cuántico y si realmente lo es», explica Elham Kashefi (Edimburgo) y Joseph Fitzsimons (Singapur),  coautores del artículo. Los más trampas que el usuario se basa en las tareas que el mejor, el usuario puede estar seguro de que el ordenador cuántico hecho, calcula con precisión.

«Hemos diseñado la prueba, de tal manera que el ordenador cuántico no puede distinguir la trampa de sus tareas normales», dice Stefanie Barz (Viena), primer autor del estudio. Este es un requisito importante para garantizar que el ordenador cuántico no es capaz de ajustar el resultado de la prueba. Los investigadores también probaron si el ordenador cuántico realmente recurre a los recursos cuántica. De esta manera, pueden asegurarse de que incluso un ordenador cuántico maliciosamente construido no puede engañar y aceptar resultados erróneos.

Aplicación de la idea con fotones

Para esta primera demostración, los investigadores utilizaron una computadora cuántica óptica, donde las partículas de luz individuales, llamadas fotones, llevan la información. El protocolo demostrado es genérico, pero los ordenadores cuánticos ópticos parece que son ideales para esta tarea. La movilidad de los fotones permite una fácil interacción con el ordenador cuántico. Philip Walther es optimista sobre las perspectivas planteadas por este experimento que muestra mecanismos de control prometedores para futuros ordenadores cuánticos. Y, por otra parte, que podría conducir a nuevas herramientas para sondear los recursos más complejos de la cuántica.

Fuente: Stefanie Barz, Joseph F. Fitzsimons, Elham Kashefi, Philip Walther. Experimental verification of quantum computation. Nature Physics, 2013; DOI:10.1038/nphys2763

Para frikis que quieran usar un ordenador cuántico

Actualidad Informática. Para frikis que quieran usar un ordenador cuántico. Rafael Barzanallana. UMU

El gran problema de los ordenadores cuánticos es la falta de algoritmos. Muchos jóvenes frikis desarrollarían gratis algoritmos cuánticos si pudieran, pero no tienen acceso a un ordenador cuántico donde ejecutarlos. El profesor Jeremy O’Brien de la Univ. de Bristol lo sabe y ha anunciado hoy, 6 de septiembre, el proyecto Qcloud: Acceso gratis a un simulador de su ordenador cuántico (que utiliza tecnologías fotónicas). Los algoritmos que funcionen de forma correcta en el simulador podrán solicitar ser ejecutados en su ordenador cuántico de verdad de forma gratuita. Gracias a ello cualquier joven friki podrá desarrollar algoritmos cuánticos y ejecutarlos en un ordenador cuántico de verdad. ¿Te animas? ¿A qué estás esperando? Regístrate en la web bristol.ac.uk/quantum-computing, donde podrás leer los manuales y las guías de usuario del simulador, dale al coco y ponte a desarrollar algoritmos cuánticos, ¿no te gustaría ser el primero en usar un ordenador cuántico gracias a Qcloud? Nos lo cuentan en “Quantum in the Cloud,” Press release, Univ. Bristol, 6 Sep. 2013.

Fuente: Francis (th)E mule Science’s News

Related Posts with Thumbnails

Calendario

noviembre 2024
L M X J V S D
« Nov    
 123
45678910
11121314151617
18192021222324
252627282930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa