admin

Categorías

Coobis

Electrónica

La basura electrónica de los países ricos, un problema de contaminación para los pobres

La basura electrónica (e-basura) de los países ricos se recicla en los países más pobres, donde causa gran contaminación y pone en peligro la salud de sus habitantes, según un estudio publicado este domingo.

Los envíos al extranjero de basura electrónica están prohibidos por acuerdo internacional, sin embargo  empresarios «sin escrúpulos» envían muchos de estos residuos a ÁfricaAsia en contenedores de carga, junto con equipos nuevos, cuya importación y exportación sí está permitida.

Las pruebas realizadas en una escuela cercana a un depósito de residuos electrónicos en el suburbio de Agbogbloshie a las afueras de Accra, capital de Ghana, revelaron unacontaminación por plomo, cadmio y otros contaminantes perjudiciales para la salud de más de 50 veces por encima de los niveles libres de riesgo.

Por otra parte el valor de los elementos de los residuos electrónicos y el gran número de personas que trabajan en el reciclaje informal «dificulta cada vez más acabar con ese lugar», ya que «el sustento de muchas personas depende ahora de los ingresos generados por estas actividades».

La ONU, organismos de EE UU y empresas informáticas se han unido a la iniciativa para acabar con la e-basuraSe calcula que, por ejemplo, 100 000 teléfonos móviles pueden contener unos 2.4 kilos de oro, equivalentes a 130 000 dólares, más de 900 kilos de cobre, valorados en 100 000 dólares, y 25 kilos de plata igual a 27 300 dólares.

Ampliar información en: 20Minutos.es

Bajo licencia Creative Commons

 

 

 

Ha muerto Julius Blank, pionero de la fabricación de circuitos integrados

Julius Blank, un ingeniero mecánico,que  fue uno de los fundadores de una empresa fabricante de chips para ordenador en la década de 1950, que se convirtió en prototipo de alta tecnología,  innovación y  campo de entrenamiento para una generación de empresarios de Silicon Valley, murió el sábado en Palo Alto, California (EE.UU.). Tenía 86 años.

Blank fue uno de los ocho científicos de la computación, que en 1957 fundaron la influyente empresa de Palo Alto Fairchild Semiconductor Corporation. Él fue uno de los dos en el grupo que tenía experiencia en fabricación.

Así que después de la investigación inicial de los científicos, para encontrar una manera barata de fabricar chips de silicio mediante un equipo específico avanzado, convenció a un inversionista para una participación con US $ 1,5 millones. La tarea de construir la maquinaria para producirlos en masa correspondió a Blank y al ingeniero  Eugene Kleiner.

Las dos partes consiguieron un equipo improvisado y fabricaron un conjunto de máquinas que, en esencia se convirtieron en la primera línea de montaje de los elementos básicos del mundo de la electrónica: circuitos electrónicos que se fabrican a partir de obleas de silicio o chips de silicio.

Blank y sus socios – que incluían a Robert N. Noyce y Gordon E. Moore, los futuros fundadores de la Corporación Intel – comenzón su aventura como el científico de la empresa, a raíz de un motín en contra de su previo empleador común, el  ganador del Nobel de física, William B. Shockley.

El dr. Shockley, se convirtió en un pararrayos para las tensiones raciales años después, cuando abogó por la eugenesia (genética), había reclutado a los ocho científicos de todo el país en 1956 para trabajar en su laboratorio de semiconductores, en las inmediaciones de Montain View, California

El grupo abandonó en masa al año siguiente por lo que sus miembros describne como estilo de gestión autoritaria del Dr. Shockley y sus diferencias con él sobre su enfoque científico. Shockley lo consideró una traición.

Los fundadores de Fairchild llegaron a ser conocidos en la tradición de Silicon Valley como los «ocho traidores». Cómo ocurrió eso, sigue siendo un misterio. «Nunca pude localizarlo», dijo Brock, el autor de la historia de la compañía. Sin embargo, el epíteto, siempre que sea su procedencia, se unió a sus nombres en casi todas las  noticias del éxito de la compañía durante años.

Blank, en una entrevista con The San Jose Mercury News, dijo que nunca había traicionadoal  Dr. Shockley. Pero, añadió, «Una vez que llegó a publicarse, es difícil de borrar.»

Julius Blank y los demás componentes del grupo de los ocho traidores demostraron ser unos auténticos emprendedores de los que nacieron grandes empresas como Fairchild, Intel, Advanced Micro Devices y National Semiconductor, grandes compañías tecnológicas que aún siguen teniendo su hueco en el sector tecnológico.

Actualidad Informática. Mueres Juluis Blank, creador de  los primeros chips. Rafael Barzanallana

Los ferroeléctricos podrían allanar el camino para la informática de consumo ultrabajo

Actualidad Informática. Condensadores con ferroeléctrcios. Rafael Barzanallana
Los ingenieros de la Universidad de California, Berkeley (EE.UU.) , han demostrado que es posible reducir la tensión mínima necesaria para almacenar la carga en un condensador, un logro que podría reducir el consumo de energía y la generación de calor de los actuales dispositivos electrónicos.

En la imagen se muestra una versión experimental de una pila hecha con una capa de  titanato de plomo y zirconio, un material ferroeléctrico. Investigadores de UC Berkeley demostraron que esta configuración podría amplificar la carga en la capa de titanato de estroncio, un aislante eléctrico, para un determinado voltaje, un fenómeno conocido como capacidad negativa. (Imagen Asif Khan)

Los investigadores han  presentado una demostración que prueba el concepto de efecto negativo de capacidad en una escala nanométrica en una heteroestructura ferroeléctrico-dieléctrico. En una bicapa de ferroeléctricos Pb (Zr0.2Ti0.8) O3 y el dieléctrico SrTiO3, la capacidad del compuesto se observó  era superior que la del constituyente SrTiO3, lo que indica una capacidad efectiva negativa del  constituyentes Pb(Zr0.2Ti0.8)O3 . La temperatura se muestra como un parámetro de ajuste efectivo de la capacidad ferroeléctrica negativa y el grado de mejora de capacidad en la heteroestructura.   Los cálculos basados en la teoría del campo medio de Landau muestran un acuerdo cualitativo con los efectos observados. Este trabajo sostiene la posibilidad de que mediante la sustitución de las puertas de óxido por ferroeléctricos en transistores a nanoescala, la pendiente puede descender por debajo del umbral  límite clásico (60 mV / década).

El equipo publicó sus resultados  el 12 de septiembre ne la revista Applied Physics Letters. El experimento prepara el escenario para una importante actualización de los transistores, el interruptor de encendido y apagado que genera los ceros y unos del lenguaje binario de los ordenadores.

«Este trabajo es la prueba del principio que es necesario para llevar adelante la capacidad negativa como una estrategia viable para superar el consumo de energía de los actuales transistores», dijo Salahuddin, el primero que teorizó la existencia de capacidad negativa en materiales ferroeléctricos, como estudiante de posgrado con el profesor de ingeniería Supriyo Datta en la Universidad de Purdue (EE.UU.). «Si podemos usar esto para crear transistores de bajo consumo de energía sin comprometer el rendimiento y la velocidad con la que trabajan, se podría cambiar la industria de la informática general.»

Los investigadores han emparejado un material ferroeléctrico, titanato de plomo y zirconio (PZT), con un aislante dieléctrico, titanato de estroncio (STO), para crear una pila de dos capas. El voltaje se aplica a esta estructura PZT-STO, así como a una capa de STO sola, y se compara la cantidad de carga almacenada en ambos dispositivos.

«Hubo una caída de tensión en espera de obtener una carga específica con el material dieléctrico», dijo Salahuddin. «Pero con la estructura ferroeléctrica, hemos demostrado una mejora de la tensión de dos veces con la carga con el mismo voltaje, y que el aumento podría ser mucho más elevado.»

La solución propuesta por Saladino y su equipo consiste en modificar los transistores actuales para que incorporen materiales ferroeléctricos en su diseño, un cambio que podría generar una carga mayor de un voltaje menor. Esto permitirá a los ingenieros hacer un transistor que disipe menos calor.

En particular, el sistema con el material que los investigadores de UC Berkeley informaron, muestra este efecto por encima de 200 grados Celsius, mucho más caliente que los 85 grados a que trabajan los actuales microprocesadores.

Los investigadores ahora están explorando nuevos materiales ferroeléctricos para  capacidad negativa  a temperatura ambiente, además de la incorporación de los materiales en un nuevo transistor

Hasta entonces, Salahuddin señala que existen otras posibles aplicaciones en la electrónica para los ferroeléctricos. «Este es un buen sistema para memorias dinámicas de acceso aleatorio, dispositivos de almacenamiento de energía, súpercondensadores que impulsen los coches eléctricos y condensadores de potencia para su uso en comunicaciones de radio frecuencia».

Fuente:  Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures

 

«Ley de Koomey» una alternativa a la Ley de Moore, donde la eficiencia se duplica cada año y medio

Actualidad Informática. Consumo energético de ordenadores, ley de Koomey. Rafael Barzanallana

Los investigadores, por primera vez,  han mostrado que la eficiencia energética de los ordenadores se duplica aproximadamente cada 18 meses.

La conclusión, respaldada por seis décadas de datos, refleja la ley de Moore, debido a observación del fundador de Intel Gordon Moore de que el poder de procesamiento del equipo se duplica cada 18 meses. Sin embargo, la tendencia de consumo de energía podría tener una mayor relevancia que la ley de Moore en dispositivos como, teléfonos, tabletas, y los sensores, que han proliferado recientemente.

En julio, Koomey dio a conocer un informe que mostró, entre otras conclusiones, que la electricidad utilizada en los centros de datos en todo el mundo aumentó en un 56 por ciento entre 2005 2010, una tasa mucho más baja que la duplicación que se observa desde 2000 a 2005.

Mientras que una mayor eficiencia energética juega un papel importante en este cambio, el total de la electricidad utilizada en los centros de datos era menor que el previsto para 2010 debido en parte a que un menor número de servidores se instalaron frente a lo esperado, debido a las tecnologías como la virtualización, que permite a los sistemas existentes para ejecutar más programas al mismo tiempo. Koomey señala que los ordenadores del centro de datos rara vez funcionan a máxima potencia. La mayoría de los ordenadores son, de hecho, «tremendamente infrautilizados», afirmó.

Para Koomey, el aspecto más interesante de la tendencia es pensar en las posibilidades de la informática. Los límites teóricos están todavía muy lejos. En 1985, el físico Richard Feynman analizó las necesidades de electricidad para las computadoras y se estima que la eficiencia teóricamente podría mejorar en un factor de cien mil millones antes de que llegara un límite, con exclusión de las nuevas tecnologías como la computación cuántica. Desde entonces, la mejora de eficiencia han sido alrededor de 40000. «Hay que ir muy lejos», dice Koomey. «Está sólo limitado por nuestra inteligencia, no por la física.

Ampliar información en: technology review  MIT

Perspectivas únicas de los moduladores a frecuencia de THz basados en grafeno

La profundidad de la modulación en moduladores de  THz  basados en gas de electrones 2-D (2DEG)  utilizando heteroestructuras de AlGaAs / GaAs con puertas metálicas está de por sí limitada a menos del 30%. La puerta de metal no sólo atenúa la señal de THz (más del 90%), sino que también degrada severamente la profundidad de modulación. Las pérdidas en el metal pueden reducirse significativamente con un material alternativo que tenga una conductividad ajustable. El grafeno presenta una solución única a este problema debido a su estructura de bandas simétricas y movilidad extraordinariamente alta de los huecos, que es comparable a la movilidad de los electrones en semiconductores convencionales. La conductividad de huecos en el grafeno puede ser  sintonizada electrostáticamente en la configuración de condensadores paralelos de grafeno-2DEG, modulando de manera más eficiente la transmisión a frecuencia de THz. En eltrabajo, se demuestra que es posible alcanzar una profundidad de modulación de más del 90%, mientras que al mismo tiempo se minimiza la atenuación de la señal a menos del 5%, mediante la regulación del nivel de Fermi en el punto de Dirac en el grafeno.

 

Actualidad informática. Moduladores de grafeno afrecuencias de terahercios. Rafael Barzanallana

 

A) Principio de funcionamiento de un modulador de THz basado en 2DEG. La transmisión de THz a través de un medio (2DEG) se modula con un voltaje aplicado entre la puerta superior y la 2DEG. La transmisión a THz es alta, con bajas densidades de 2DEG, y baja con altas densidades de 2DEG, debido a la absorción y reflexión. (B) Estructuras de capas tradicionales de metal-puerta/2DEG y grafeno/2DEG y propuestas de  grafeno / grafeno  para moduladores a THz. La muestra en el cuadro son los diagramas esquemáticos de  bandas de energía de un modulador de grafeno / aislante / grafeno que promete cerca de cero atenuación del haz de y  profundidad de modulación unidad. Cuando el nivel de Fermi está en el punto de Dirac de las capas de grafeno, tanto la superior como la  inferior, la transmisión de THz se aproxima a la unidad, cuando las láminas de electrones y de huecos de cargas se forman en las capas de grafeno superior e inferior, la transmisión de THz se acerca a cero.

En conclusión, se ha presentado un estudio analítico sobre los límites actuales de rendimiento moduladores a THz basados en 2DEG, y cómo la incorporación de grafeno como  puerta de ‘metal ajustable’ que promete mejoras significativas en el rendimiento. En las estructuras propuestas anteriormente metal/AlGaAs/2DEG/GaAs, la profundidad de modulación máxima es de por sí limitada a menos del 30% por el efecto adverso de la puerta de metal de alta conductividad, así como la conductividad máxima alcanzable de la lámina 2DEG. Una monocapa de grafeno  puede ser casi transparente, cuando su nivel de Fermi se sintoniza en el punto de Dirac y bloquea casi  todo el haz de  THz cuando se ajusta a su máxima conductividad, lo cual es extraordinario en comparación con cualquier otro sistema 2DEG. Mediante la adopción de grafeno en moduladores 2DEG  a THz, la atenuación del haz es baja y despreciable y profundidad de modulación próxima a la unidad  es alcanzable, proporcionando  ventajas incluyendo RT,  banda ancha, y polarización independiente de la operación.

Fuente:  Next Big Future

 

Método de fabricación que abre el camino para la viabilidad comercial de LEDs basados en puntos cuánticos

Actualidad Informática. Puntos cuánticos para iluminación. Rafael Barzanallana
Investigadores de la universidad de la Florida puede ayudar a resolver el debate público sobre el futuro de las  fuentes de iluminación en los Estados Unidos: bombilla incandescente de Edison o las más eficientes energéticamente, las lámparas fluorescentes compactas. Podría ser ninguna de ellas.

En cambio, las necesidades futuras de iluminación de los Estados Unidos pueden ser suministrado por un nuevo tipo de , o LED, que evoca la luz del mundo invisible de los puntos cuánticos (QD). Según un artículo publicado en la edición en línea actual de la revista , mover un QD LED del laboratorio al mercado está a un paso más cercano a la realidad gracias a un nuevo proceso de fabricación, diseñado por primera vez por dos equipos de investigación en el departamento de Ciencia de los Materiales e Ingeniería.

«Nuestro trabajo abre el camino para la fabricación eficiente y estable de puntos cuánticos basados en LED con un coste realmente bajo, lo cual es muy importante si queremos ver  un uso generalizado de estos LEDs comerciales en grandes superficies  a todo color de las pantallas planas o como fuentes de iluminación de estado sólido para reemplazar las luces incandescentes y fluorescentes existentes «, dijo Xue Jiangeng, el líder de la investigación y profesor asociado de e ingeniería «Los costes de fabricación se redujeron significativamente para estos dispositivos, en comparación con la forma convencional de hacer dispositivos semiconductores LED «.

Una parte importante de la investigación llevada a cabo por el equipo de Xue se centró en la mejora de los LED’s orgánicos. Estos semiconductores son estructuras de varias capas compuestas por materiales orgánicos finos, como los polímeros plásticos, que se utilizan para encender los sistemas de visualización en monitores de ordenador, pantallas de televisión, así como los dispositivos más pequeños, como reproductores MP3, teléfonos móviles, relojes, y otros electrónicos portátiles dispositivos. Los OLED son cada vez más populares entre los fabricantes, ya que utilizan menos energía y generan imágenes más brillantes y nítdas que las producidas por las pantallas LCD convencionales. Paneles ultradelgados  OLED también se utilizan como sustitutos de las bombillas tradicionales y pueden ser la próxima gran novedad  en 3-D.

Como complemento del equipo de Xue. otro encabezado por Paul Holloway, profesor de ciencia de los materiales e ingeniería en la Universidad de Florida,  que ahondó en  puntos cuánticos. Estas nanopartículas son pequeños cristales de sólo unos pocos nanómetros (mil millonésimas de metro) de ancho, compuesta de una combinación de átomos de  zinc, azufre, selenio y cadmio. Cuando son excitados por la electricidad, los puntos cuánticos emiten una serie de luces de colores. Los colores individuales varían en función del tamaño de los puntos. El ajuste de los colores se consigue controlando el tamaño de los puntos cuánticos durante el proceso de síntesis.

Al integrar el trabajo de ambos equipos, los investigadores crearon un híbrido de alto rendimiento LED, compuesto por capas orgánicas y QD base. Hasta hace poco, sin embargo, los ingenieros de la Universidad de Florida y en otros lugares se han en un enfrentado con un problema de fabricación que impedía el desarrollo comercial. Un proceso industrial conocido como deposición al vacío es la forma común de situar las moléculas orgánicas necesarias en el lugar para llevar la electricidad a los puntos cuánticos. Sin embargo, un proceso de fabricación diferente llamado spin-coating, se utiliza para crear una capa muy fina de puntos cuánticos. Tener que utilizar dos procesos separados ralentiza la producción y eleva los costos de fabricación.

De acuerdo con el artículo de Nature Photonics, los investigadores de la UF superaron este obstáculo con una estructura de sistema patentado que permite depositar todas las partículas y moléculas necesarias en el LED en su totalidad con spin-coating. La estructura del dispositivo también mejoró significativamente los rendimientos de la eficiencia del dispositivo y la vida útil en comparación con informes anteriores de dispositivos QD basados en LED.

Spin-coating, no puede ser la solución final de fabricación, sin embargo. «En términos de fabricación del producto real, hay muchas otras etapas de procesamiento continuo de alto rendimiento «roll-to-roll«, procesos de impresión o recubrimiento que podríamos utilizar para la fabricación de pantallas de gran área o dispositivos de iluminación», dijo Xue. «Esto seguirá siendo un tema de futuras investigaciones y desarrollo para la universidad y una empresa de nueva creación, NanoPhotonica, que ha licenciado la tecnología y se encuentra en medio de un programa de desarrollo de la tecnología para aprovechar el avance de fabricación.»

Fuente:  Universidad de la Florida

Comunicación a través de silicio mediante el espín del electrón

Actualidad Informática. Conducción mediante spin del electrón en cables de silicio. Rafael Barzanallana
El envío de información mediante la variación de las propiedades de las ondas electromagnéticas ha servido a la humanidad desde hace más de un siglo, pero a medida que nuestros chips electrónicos disminuyen de tamaño, las señales que llevan pueden difundirse a través de los cables e interferir unos con otros, presentando una barrera a una mayor reducción de tamaño. Una posible solución podría ser la de codificar unos y ceros, no con tensión,  sino con el espín del electrón (spin),  los investigadores han cuantificado algunos de los beneficios que este nuevo enfoque podría generar.

En un artículo en la revista AIP’s journal Applied Physics Letters, un equipo de la University of Rochester y la  University of Buffalo ha propuesto un nuevo sistema de comunicaciones que utiliza cables de silicio para llevar una corriente constante para conducir electrones desde un emisor a un receptor. Al cambiar  la imanación en un contacto, se puede inyectar el espín del electrón (ya sea hacia arriba o hacia abajo) hasta el final del transmisor.

En el extremo receptor, un imán puede separar la corriente basada en el espín, y un dispositivo de lógica  registraría los unos y ceros. Los investigadores eligieron los cables de silicio ya que en los electrones del silicio su espín permanece más que en otros semiconductores. El equipo calculó el consumo de ancho de banda y la potencia de un modelo de Circuito de comunicación-espín, y encontró que se transmite más información y se utiliza menos energía que  en los circuitos con las técnicas existentes en la actualidad.

Los investigadores encontraron que la latencia o el tiempo que tarda la información en viajar del transmisor al receptor, fue mayor en el Circuito de comunicación-espín, pero otros beneficios significan que el nuevo esquema puede algún día constituir el diseño de muchas tecnologías emergentes.

Artículo: «Silicon spin communication»  publicado en Applied Physics Letters.

Autores: Hanan Dery (1,2), Yang Song (2), Pengke Li (1), e Igor Zutic (3).

(1) Departamento de Ingeniería Eléctrica y Computación de la Universidad de Rochester
(2) Departamento de Física y Astronomía de la Universidad de Rochester
(3) Departamento de Física de la Universidad de Buffalo, Universidad Estatal de Nueva York

Nuevas tecnologías dan lugar a ordenadores a escala milimétrica

Actualidad Informática. ordenadores implantables en el ojo. Rafael Barzanallana
Un prototipo de monitor de la presión ocular implantable para pacientes con glaucoma se cree que contiene en unos milímetros un  sistema de computación a escala completa.

Y una radio compacta que no requiera ajuste  para sintonizar la frecuencia correcta puede ser un factor clave para la organización a escala milimétrica de los sistemas de redes de sensores inalámbricos. Estas redes podrían un día rastrear la contaminación, monitorear la integridad estructural, realizar la vigilancia, o hacer prácticamente cualquier objeto inteligente y rastreable.

Ambos desarrollos en la Universidad de Michigan (EE.UU.), son hitos importantes en la marcha hacia la informática a escala milimétrica, se cree que es la frontera electrónica que viene.

Los investigadores presentarán ponencias sobre cada uno  en la International Solid-State Circuits Conference (ISSCC) de San Francisco. El trabajo está dirigido por tres profesores del Departamento de Ingeniería Eléctrica y Ciencias de la Computación: profesores Dennis Sylvester y David Blaauw, y profesor asistente de David Wentzloff.

Ley de Bell y la promesa de la computación ubicua

Casi invisibles a escala milimétrica estos sistemas podrían permitir la computación ubicua, y los investigadores dicen que es el futuro de la industria. Apuntan a la Ley de Bell, un corolario de la Ley de Moore. (Moore dice que el número de transistores en un circuito integrado se duplica cada dos años, doblando la potencia de procesamiento).

La ley de Bell dice que hay una nueva clase de pequeños, ordenadores más baratos cada década. Con cada nueva clase, el volumen se reduce en dos órdenes de magnitud y el número de sistemas por persona aumenta. La ley se ha mantenido desde 1960 mainframes, en los años 80 los ordenadores personales, ordenadores portátiles en los años 90 y actualmente los teléfonos inteligentes del nuevo milenio.

«Cuando se hacen más pequeños que los dispositivos de mano,  se llega a estos dispositivos de control», dijo Blaauw. «El siguiente gran desafío es lograr a escala milimétrica sistemas, que ofrezcan una serie de nuevas aplicaciones para el control de nuestros cuerpos, nuestro ambiente y nuestros edificios. Debido a que son tan pequeños, se podrían fabricar cientos de miles en una oblea.  Se podrían utilizar cientos de ellos por persona y es este aumento per cápita el que impulsará el crecimiento de la industria de los semiconductores «.

El primer sistema complet0 a escala milimétrica

El nuevo sistema Blaauw y Sylvester está dirigido a aplicaciones médicas. El trabajo que presentaron en ISSCC se centra en un monitor de presión diseñado para ser implantado en el ojo, para hacer un seguimiento convenientemente y continuamente del progreso del glaucoma, una enfermedad que puede producir ceguera. (El dispositivo se espera que esté disponible en el mercado en pocos años).

En un paquete de un poco más de un milímetro cúbico, el sistema  incorpora un ultra bajo consumo de energía del microprocesador, un sensor de presión, la memoria, una batería de película delgada, una celda solar y una radio inalámbrica con una antena que puede transmitir datos a un lector externo, el dispositivo que se ubicará cerca del ojo.

«Esta es el primer  sistema de computación completo a escala auténticamente milimétrica», dijo Sylvester. «Nuestro trabajo es único en el sentido de que estamos pensando en sistemas completos en los que todos los componentes son de bajo consumo y su ajuste en el chip. Podemos obtener información, almacenarla y transmitirla. Las solicitudes de sistemas de este tamaño son innumerables «.

El procesador del monitor de la presión del ojo es la tercera generación de chips de los investigadores de Phoenix, utiliza una arquitectura de  energía única y un modo de reposo extremo, para lograr ultra bajo consumo de energía. El sistema se  activa cada 15 minutos para tomar medidas y consume una media de 5,3 nanovatios. Para mantener la batería cargada, se requiere la exposición a 10 horas de luz interior cada día o 1,5 horas de luz solar. Es capaz de almacenar hasta una semana de información.

Si bien este sistema es minúsculo y completo, su radio puede hablar con otros dispositivos como él. Esa es una característica importante para cualquier sistema dirigido a redes de sensores inalámbricos.

Una radio compacta única para permitir las redes de sensores inalámbricos

Wentzloff y el estudiante de doctorado Huang Kuo-Ken han dado un paso hacia permitir  tales comunicaciones de nodo a nodo. Han desarrollado una radio consolidada con una antena en el chip que no necesita el adaptador  voluminoso que usan los ingenieros cuando dos dispositivos aislados necesitan  «hablar» unos con otros.

Han dado lugar a una nueva antena para medir el tiempo por sí misma y actuar como su propia referencia. Mediante la integración de la antena a través de un avanzado proceso CMOS, se puede controlar con precisión su forma y tamaño y por lo tanto la forma en que oscila en respuesta a señales eléctricas.

«Las antenas tienen una frecuencia de resonancia natural para las señales eléctricas, que se define por su geometría, como un tono puro de audio en un sintonizador», dijo Wentzloff. «Al diseñar un circuito para monitorizar la señal en la antena y medir cuán cerca está de la resonancia natural de la antena, puede bloquear la señal transmitida a la frecuencia de resonancia de la antena.»

«Esta es la primera antena integrada que también sirve como su propia referencia. La radio en nuestro chip no  precisa un ajuste externo. Una vez que se despliega una red de ellos, automáticamente se alinean en la misma frecuencia.» Los investigadores están ahora trabajando en la reducción del consumo de energía de la radio para que sea compatible con baterías a escala milimétrica.

Fuente: EurekAlert¡

Japoneses desarrollan un método para la impresión de transistores monocristalinos de película delgada

Los investigadores que trabajan en el National Institute of Advanced Industrial Science and Technology (AIST) de Tsukuba, Japón, han desarrollado un método para la impresión de transistores de película delgada con tecnología de inyección de tinta. El equipo describe el proceso en un artículo publicado en la revista Nature.

Para evitar el problema de autocristalización, inherente a otros procesos de elaboración de transistores mediante inyección de tinta, lo que resulta en la propagación de los defectos, que hace que sea difícil  imprimir de manera uniforme, el equipo escogió en  lugar la utilización de un proceso en dos pasos, en el que un tipo de tinta se rocía primero en un sustrato y es seguido por otro inmediatamente después, directamente en la parte superior del primero, los dos se mezclan, creando un entorno en el que crece un solo cristal nítido y fuerte  y se adhiere al material que está impreso.

Actualidad Informática. Transistores mediante inyección de tinta. Rafael Barzanallana

La tinta  que se aplica en la primera pasada es  un líquido (dimetilformamida anhidra), que tiene un semiconductor, pero que no es soluble. El segundo se compone de un semiconductor orgánico en un solvente. Después de que el primero se difunde sobre el sustrato, se procede con elsegundo, los dos se mezclan naturalmente, y luego, desde un solo punto en la mezcla, un pequeño cristal empieza a crecer, y sigue creciendo hasta que todo el conjunto de tinta se consume, lo que resulta en una película delgada (de 30 a 200 nm de espesor) de C8BTBT fijo al sustrato. Después de la impresión del patrón completo,  un nuevo proceso sobre el sustrato, completa el transistor.

Los investigadores están buscando tecnologías de inyección de tinta  para fabricar transistores  con la esperanza de que podría dar lugar a una gran cantidad de productos que se basan en sustratos flexibles, tales como pantallas flexibles, células solares, sensores, o papel electrónico, y porque se ofrecen un menor costo de producción en comparación con los tradicionales productos en base a silicio.

Ampliar información en: PHYSORG.COM

Etapa importante en el desarrollo de ordenadores de una nueva generación

Espintrónica

Los científicos han dado un paso más hacia la próxima generación de ordenadores. La investigación del Cavendish Laboratory, the University of Cambridge’s Department of Physics (Reino Unido), proporciona nuevas ideas sobre la espintrónica, que ha sido aclamada como la sucesora del transistor.

La espintrónica, que explota  el momento magnético pequeño, o ‘spin’ del electrón, podría cambiar radicalmente la computación debido a su potencial de consumo de alta velocidad, alta densidad y bajo consumo de energía. La nueva investigación arroja luz sobre cómo hacer el spin más eficiente.

Durante los últimos cincuenta años, los avances en la electrónica se han basado en gran medida de la reducción del tamaño del transistor a través de la industria de los semiconductores con el fin de proporcionar la tecnología para los equipos pequeños y poderosos que son la base de nuestra sociedad de la información moderna. En un documento de 1965, el cofundador de Intel Gordon E. Moore describió cómo el número de transistores que pueden ser situados a bajo costo en un circuito integrado se duplicaba cada año entre 1958 y 1965, indicando que la tendencia continuaría por lo menos diez años más.

Esa predicción, ahora conocida como Ley de Moore, efectivamente  describe una tendencia que ha continuado desde entonces, pero el fin de esa tendencia, el momento en que los transistores sean tan pequeños como los átomos, y no se pueda reducir más, se espera que suceda en el año 2015. Por el momento, los investigadores buscan nuevos conceptos de electrónica que sostengan el crecimiento de la potencia de cálculo.

La investigación en espintrónica trata de desarrollar una tecnología electrónica basada en el spin, que reemplazará a la tecnología de carga eléctrica  fundada en los semiconductores. Los científicos ya han comenzado a desarrollar nuevos productos electrónicos  de este tipo, empezando con el descubrimiento en 1988 del efecto de la magnetorresistencia gigante (GMR). El descubrimiento del efecto GMR produjo un gran avance en las unidades de de disco duro y también fue clave en el desarrollo de dispositivos electrónicos portátiles como el iPod de Apple.

Mientras que la tecnología convencional se basa en el aprovechamiento de la carga de los electrones, el campo de la espintrónica depende en cambio, en la manipulación del spin de los electrones. Una de las propiedades únicas de la espintrónica es que el  spin puede ser transferido sin flujo de corrientes de carga eléctrica. Esto se llama «corrriente de spin» y, a diferencia de otros conceptos de aprovechamiento de los electrones,  mediante la «corrriente de spin» es posible transferir información sin generar calor en los aparatos eléctricos. El principal obstáculo que resta para una tecnología viable  es la dificultad de crear un volumen de corriente de spin lo suficientemente grande como apoyar los dispositivos electrónicos actuales y futuros.

Sin embargo, los investigadores de Cambridge, en estrecha colaboración con el grupo del profesor Sergej Demokritov  de la Universidad de Muenster (Alemania), en parte, abordaron esta cuestión. Con el fin de crear corrientes de spin mejoradas, los investigadores utilizaron el movimiento colectivo de giro denominado ondas de spin (propiedad ondulatoria de los spines). Las ondas de spin en interacción,  han demostrado una nueva manera, más eficiente para la generación de  corrientes de spin.

El Dr. Hidekazu Kurebayashi, del Grupo de Microelectrónica en el Laboratorio Cavendish, afirmó: «Usted puede encontrar gran cantidad de ondas de distinta naturaleza, y una de las cosas fascinantes es que las ondas frecuentemente interactúan entre sí, de  igual manera, hay una serie de interacciones diferentes en las ondas de spin. Nuestra idea es utilizar estas interacciones de ondas de spin para la generación de corrientes de spin eficientes.»

Según sus conclusiones, una de las interacciones  de ondas de spin (llamada three-magnon splitting) genera corrientes de spin diez veces más eficientes que  empleando ondas de spin preinteractuantes. Además, los resultados enlazan  los dos campos principales de investigación de la espintrónica,  la corriente de spin y la interacción spin onda.

Para obtener información adicional, por favor póngase en contacto con:
Dr. Hidekazu Kurebayashi

Correo electrónico: hk295@cam.ac.uk

Fuente:  EurekAlert!

Related Posts with Thumbnails

Calendario

noviembre 2024
L M X J V S D
« Nov    
 123
45678910
11121314151617
18192021222324
252627282930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa