admin

Categorías

Coobis

Electrónica

Transistor óptico

En un artículo publicado el 11 de noviembre de 2010 en la revista Science, investigadores de la EPFL y el Instituto Max Planck de Óptica Cuántica (Alemania) anunciaron el descubrimiento de un método de acoplamiento para fotones y vibraciones mecánicas que podría tener numerosas aplicaciones en las telecomunicaciones y las tecnologías de la informática cuántica.

El control y la modulación del flujo de luz es esencial en las  telecomunicaciones actuales. El profesor Tobias Kippenberg y su equipo en el EPFL’s Laboratory of Photonics and Quantum Measurements han descubierto una nueva manera de acoplar la luz y las vibraciones.  Mediante el uso de este descubrimiento, se construyó un dispositivo en el que podría controlar por un segundo haz más intenso, un rayo de luz que viaja a través de un microrresonador óptico.  El dispositivo actúa así como un transistor óptico, en el que un rayo de luz influye en la intensidad de otro.

El microrresonador óptico tiene dos características: en primer lugar, atrapa la luz en una estructura de vidrio pequeña, guiando el haz en un patrón circular. En segundo lugar, la estructura vibra, como una copa de vino, en frecuencias bien definidas. Debido a que la estructura es tan pequeña (una fracción del diámetro de un cabello humano), estas frecuencias son 10 000 superiores que la vibración de una copa de vino. Cuando la luz se inyecta en el dispositivo, los fotones ejercen una fuerza llamada presión de radiación, que aumenta en gran medida por el resonador.  La creciente presión deforma la cavidad, posibilitando el acoplamiento a la luz de las vibraciones mecánicas. Si se usan dos rayos de luz, la interacción de los dos láseres con las vibraciones mecánicas resulta en una especie de «switch» óptico: el fuerte «control» láser puede activar o desactivar una debil «sonda» láser al igual que en un transistor electrónico.

«Hemos sabido desde hace más de dos años que este efecto era teóricamente posible», explica el científico Albert Schliesser, pero el probarlo resultço laborioso.» El científico Senior del EPFL Samuel Deléglise señala que «el acuerdo entre la teoría y experimento es realmente sorprendente.»

Las aplicaciones de este efecto novedoso, denominado «OMIT» (optomechanically-induced transparency), podría proporcionar una funcionalidad completamente nueva a la fotónica.  Las conversiones de radiación a vibración ya está muy extendida por ejemplo, en los teléfonos móviles,  un receptor convierte la radiación electromagnética a vibraciones mecánicas, lo que permite que la señal se filtre de manera eficiente. Pero ha sido imposible hacer este tipo de conversión con la luz. Con un dispositivo OMIT basado en un campo de luz visible podría, por primera vez podría convertirse en una vibración mecánica. Esto podría abrir una enorme gama de posibilidades en el campo de las telecomunicaciones. Por ejemplo, se pueden diseñar nievos búferes ópticos de forma que puedan almacenar información óptica hasta varios segundos.

En un nivel más fundamental, los investigadores de todo el mundo han estado tratando de encontrar maneras de controlar sistemas optomecánicos a nivel cuántico: el acoplamiento conmutable demostrado por el equipo de EPFL-Max Planck podría ayudar a la comunidad a superar este obstáculo, al servir como una interface importante en los sistemas cuánticos híbridos.

Referencia de la publicación:

Reference:

  1. Stefan Weis, Rémi Rivière, Samuel Deléglise, Emanuel Gavartin, Olivier Arcizet, Albert Schliesser, and Tobias J. Kippenberg. Optomechanically Induced Transparency. Science, 11 November 2010 DOI: 10.1126/science.1195596

______________________

Enlaces de interés:

–  Científicos de Frontera. Cirac

–   Nuevo material que supone avance en la computación cuéntica

–  La nevera más pequeña del mundo

Cabello a la moda mediante un SMS

La última moda consiste en implantarse cabello artificial de fibra óptico-métrica. Cada falso cabello contiene un minúsculo receptor de FM con el que recibe información de diversos servidores de Internet. El circuito nanoscópico incluye un conjunto de diminutos leds capaces de componer hasta 256 colores distintos.

El material con el que se ha desarrollado el cabello postizo facilita la transmisión del color a toda la superficie del filamento, creando la impresión que el pelo es del color de la base.

Una dinamo térmica autónoma transforma el color corporal del cuero cabelludo en la energía necesaria para el correcto funcionamiento de cada tecno-cabello.

Una vez implantado puedes, desde tu teléfono móvil, decidir el color de cabello que quieres lucir. Es tan sencillo como enviar un SMS al 29729 con el texto COLOR espacio AZUL-VERANO y, en cinco minutos, por algo menos de un euro, tu pelo lucirá tan azul como el cielo de una preciosa tarde de agosto.

Los que ya lo han probado están encantados y sólo intuyen un leve inconveniente. La garantía de cada ciber-pelo es de 100 años. Eso significará que, una vez superado ese periodo, el mecanismo empezará a fallar. Estas modernas maravillas perderán a la larga la capacidad de colorearse y volverán a su estado original: mostraran un color transparente, cercano al blanco, que dará un aspecto cómo de cabeza nevada.

Los expertos buscan un nombre para este curioso y nuevo fenómeno tecnológico. Los más avispados proponen llamarlo canas.

Fuente:  La ciencia y sus demonios

_________________________

Enlaces de interés:

–  Seguridad del estado con un toque de luz. Fotónica

–  Biografía de Claude Shannon

–  Premio Nobel Física 2009

–  Apuntes Introduccion a la Informática. GAP. UMU. La Información

–  Actualidad informática: Nanotecnología

2010 Nobel, Física: Andre Geim y Konstantin Novoselov por el descubrimiento del grafeno

Los dos científicos de la Universidad de Manchester que descubrieron el grafeno, Andre Geim y Konstantin Novoselov han obtenido el Premio Nobel de Física de 2010 por iniciar uno de los campos  de investigación más candentes de la actualidad. Los análisis bibliométricos de Thomson Reuters han acertado este año con un pleno. Mi entrada está basada en el anuncio oficial del Premio Nobel (Prize Announcement). He visto en directo (online) el anuncio, que ha incluido una entrevista a Geim muy emotiva (se le oía muy emocionado por el premio aunque se sabía firme ganador algún día). [PS: Más información en inglés en Advanced Information y Popular Information].

El grafeno es una película de un átomo de grosor de átomos de carbono colocados en una red atómica perfecta. Esta forma del grafeno tiene unas propiedades excepcionales que se originan en las sutilezas de la física cuántica. El grafeno (igual que el diamente) es un material muy duro, aunque solo tenga un átomo de grosor, es buen conductor de la electricidad (mejor que el cobre), del calor (el mejor conductor del calor conocido), es casi transparente (ver la foto adjunta), pero tan denso que ni siquiera un átomo de helio (el átomo más pequeño de un gas) puede atravesar sus agujeros (entre los átomos de carbono).

Geim y Novoselov extrajeron el grafeno de un trozo de grafito (el mismo que se encuentra en cualquier lápiz ordinario). Utilizaron una especie de cinta adhesiva que les permitió extraer del grafito una lámina de un solo átomo de carbono. Muchos científicos creían entonces que era imposible que una lámina de un solo átomo de grosor cualquier material era imposible de fabricar porque era inestable. Geim y Novoselov lograron lo inesperado y con ello se convirtieron en firmes candidatos al Premio Nobel que ahora han obtenido.

El grafeno ha permitido a los físicos estudiar las propiedades de los materiales en solo dos dimensiones. Muchas de estas propiedades se deben a fenómenos de la física cuántica sin análogo en el mundo de los materiales en tres dimensiones. Las aplicaciones del grafeno están aumentando cada día, entre ellas, la creación de nuevos materiales y la fabricación de productos electrónicos innovadores (como transistores de grafeno) que podrían reemplazar al silicio y el germanio en muchas aplicaciones. Como es prácticamente transparente y un buen conductor, el grafeno es adecuado para la producción de pantallas táctiles transparentes, pantallas para televisores y monitores, e incluso las células solares. Mezclado con plásticos el grafeno los convierte en conductores de la electricidad, haciéndolos más resistentes al calor y más resistente mecánicamente, lo que ha permitido desarrollar nuevos materiales delgados superfuertes, con buenas propiedades elásticas y muy ligeros, con posibles aplicaciones en satélites, aviones y automóviles.

Konstantin Novoselov, de 36 años, es ciudadano británico y ruso, aunque nació en Rusia. Andre Geim, de 51 años, es ciudadano holandés, aunque también nació en Rusia. Novoselov trabajó por primera vez con como estudiante de doctorado de Geim en los Países Bajos. Posteriormente le siguió al Reino Unido. Ambos estudiaron su carrera de física en Rusia. Ahora son profesores de la Universidad de Manchester.

Más sobre el grafeno en este blog:

El grafeno, la panacea de la nanoelectrónica,” 27 Marzo 2009;

Tan fácil como tocar y pegar o cómo depositar capas monoatómicas de grafeno sobre silicio y óxido de silicio utilizando cobre,” 7 Mayo 2009;

Desenrollando nanotubos de carbono multicapa en nanoláminas de grafeno (o cuando una imagen vale más que mil palabras),” 16 Abril 2009;

La meteórica carrera de Tomás Palacios y el transistor de grafeno ultrarrápido,” 4 Mayo 2009;

Nanotransistores con canal de nanotubos para los ordenadores del futuro,” 29 Mayo 2008;

Nanotransistores ultrarrápidos basados en grafeno,” 16 Septiembre 2010;

Quién será capaz de fabricar el grafeno semiconductor,” 28 Marzo 2010;

El joven científico español Tomás Palacios entrevistado en la revista Science,” 26 Marzo 2010;

Grafeno ultraplano sobre un substrato de mica,” 19 Noviembre 2009;

Observado el efecto Hall cuántico fraccionario en grafeno,” 16 Noviembre 2009.

Fuente: Francis (th)E mule Science’s News

IBM investiga memoria DRAM de un solo átomo

Lo último en «chips» de memoria del futuro, codificar bits en átomos individuales, una capacidad demostrada recientemente para los átomos de hierro en una investigación en «IBM’s Almaden Research Center»  en San José, California (EE.UU.), que dio a conocer una nueva técnica de impulsos  para los microscopios de efecto túnel (STM ).

Pulsos-STM con un rendimiento de nanosegundos en tiempo de resolución, es un requisito para el diseño de chips de memoria a escala atómica, paneles solares y los ordenadores cuánticos del futuro.

«Mi esperanza es que podamos generar una gran serie con resolución temporal de nanosegundos y en escala espacial resolución atómica con los STM,» dijo Andreas Heinrich, un físico de IBM en el laboratorio Almadén.

STM,  fue  inventado por IBM en la década de 1980, se han convertido en el caballo de batalla de la industria de los materiales semiconductores. Su resolución se extiende hasta el final de la escala atómica, lo que permite examinar átomos individuales.  Por desgracia, los STM son lentos en hacer mediciones tan delicadas. Ahora IBM ha puesto a punto una nueva técnica  STMde pulsos que lleva a la capacidad de medir el tiempo a la par con la precisión nanométrica como medidas de distancia.

La técnica  de IBM trabaja en una manera similar a como trabaja una láser pulsado. En primer lugar una señal de la bomba se introduce en el material de la punta del STM para  poner spin electrónico del átomo en un estado conocido, después de un período de espera una sonda  de señal más pequeña es utilizada para hacer una medición. Repitiendo el proceso, cada vez que se amplía el tiempo entre los pulsos por unos pocos nanosegundos, el proceso es capaz de medir con exactitud el tiempo de relajación del  spin electrónico o el tiempo que un bit de información es retenido por un solo átomo de hierro.

Hoy en día los «chips» de memoria DRAM deben actualizar (refrescar) sus bits cada 50 milisegundos o menos, pero utilizando la nueva técnica STM de pulsos, IBM ha observado que los átomos individuales de hierro podrían ser refrescados  cada 250 nanosegundos aproximadamente, alrededor de 200000 veces más rápido.

«Ahora sabemos la respuesta a la pregunta:» ¿Qué pasa cuando tratas de almacenar información en un solo átomo de hierro?  Y esperamos que en el futuro a largo plazo podemos hacer un progreso similar en respuesta a las preguntas acerca de la eficiencia de células solares y los ordenadores cuánticos «, dijo Heinrich.

La técnica STM de pulsos se podría adaptar a la medición de la eficiencia de células solares individuales mediante el uso de un pulso de luz como la bomba para estimular las células solares y entonces realizando la exploración con la punta del STM. Heinrich también espera poder revelar el funcionamiento interno de las puertas lógicas de un ordenador cuántico, utilizando la técnica de STM de pulsos.

«Si podemos poner bits cuánticos en superficies tal que tienen que interactuar unos con otros, entonces, básicamente, vamos a mostrar una nueva forma de computación cuántica realizada realmente en la escala atómica. Ésa es mi visión del futuro de la mecánica cuántica», dijo Heinrich .

Fuente:  EETimes

_____________

Enlaces relacionados:

–  Nuevo material que supone avance en la computación cuántica

–  Ordenadores cuánticos

Puerta lógica mecánica: ¿Podrían las palancas reemplazar a los transistores?

De vuelta a la época victoriana, Charles Babbage creó un equipo mecánico que usaba palancas y engranajes para obtener los datos en movimiento. Actualmente, sin embargo, nuestros ordenadores en su mayoría operan utilizando transistores electrónicos. Por desgracia, al juntar una puerta lógica para su uso en la informática, algunos  de los los materiales utilizados no puede resistir el calor. El carburo de silicio se ha utilizado para ayudar a fortalecer el silicio ordinario, que se degrada a 250 a 300 grados Celsius.Sin embargo, estos  transistores son voluminosos, lentos  y requieren altos voltajes.

Con el fin de evitar este problema Te-Hao Lee y un equipo de la Case Western Reserve University volvió a las ideas de Babbage  de la computación mecánica. New Scientist informa sobre el esfuerzo de integrar la informática en nuestros sistemas mecánicos electrónicos modernos:

Su equipo ha desarrollado una versión mecánica de un inversor – el módulo que se utiliza para construir muchos tipos de puertas lógicas, que a su vez son un componente fundamental de los circuitos digitales, enlos ordenadores. El dispositivo utiliza un arreglo de palancas a nanoescala en lugar de . Al igual que un operador del telégrafo Morse, estas palancas físicas habilitan y deshabilitan contactos para dejar pasar o bloquear las corrientes.

La aplicación de un voltaje hace mover las palancas mediante atracción electrostática . El equipo  de Lee consiguió que el inversor a  550 C se encienda y se apague 500000 veces por segundo, realizando un cálculo en cada ciclo.

Dichas temperaturas de funcionamiento son alentadores. Sin embargo, hay problemas. Los componentes mecánicos se empiezan a romper después de dos mil millones de ciclos, lo que limita su utilidad. Además, esta configuración es siempre más lenta que la velocidad de un PC normal. Sin embargo, los principales usos de una puerta lógica mecánica probablemente no serían en la informática de consumo. En su lugar, tal dispositivo tendría más sentido en situaciones de calor muy elevado, como por ejemplo los motores de cohete.

Más información:

Te-Hao Lee, Swarup Bhunia, Mehran Mehregany, «Electromechanical Computing at 500°C with Silicon Carbide» Science (septiembre de 2010). Disponible en línea: 29/5997/1316 http://www.science …
Paul Marks, «Steampunk chip takes the heat», revista New Scientist (10 de septiembre de 2010). Disponible en línea: http://www.newscie … él-heat.html
Hamish Johnston, Logic circuit takes the heat «, PhysicsWorld (14 de septiembre de 2010). Disponible en línea: http://physicsworl … / news/43734.

Fuente:  PHYSORG.COM

_________________

Enlaces de interés:

–  Actualidad informática: Electrónica

–  Breve historia de la electrotécnica

–  Historia de la Informática. La era de la electrónica

–  Ley de Moore

Crean el primer transistor de Grafeno (100 GHz)

IBM, compañía con gran número de patentes a nivel industria, anunció en febrero pasado la creación de un transistor capaz de funcionar a una frecuencia de 100GHz; la pequeña unidad está compuesta de Grafeno.

La firma International Business Machines (IBM) anunció en febrero pasado la creación de un transistor fabricado con Grafeno y que es capaz de funcionar a frecuencias de hasta 100GHz. El logro le ha sido adjudicado a al investigador Phaedon Avouris, Director de Ciencia a Escala Nanométrica de IBM, cuya participación consistió en la supervisión de este proyecto.

Como parte de la retrospectiva de la compañía en su intento por crear el transistor, en el año 2008 la empresa comenzaba a trabajar con el Grafeno (material con alta conductividad) y consiguió fabricar prototipos de transistores que corrían a velocidades de varios Ghz, no obstante es hasta ahora que se ha logrado llegar a la barrera de los 100 GHz en una unidad lógica (transistor equivalente a 100 mil millones de cambios entre “0” y “1” por segundo).

El Grafeno, cuyo compuesto de Carbono con sus átomos densamente empaquetados es similar al Grafito, desde el punto de vista físico tiene una estructura laminar plana de tan solo un átomo de grosor y conformada por átomos de Carbono que crean a su vez una red cristalina asemejada a la forma de un panal de abejas. Cada átomo está ligado a sus vecinos mediante enlaces covalentes y es un componente estructural básico de todos los demás elementos graníticos, incluyendo los nanotubos de Carbono y los fulerenos.

Con los recursos que han sido identificados en los últimos años sobre componentes desarrollados con Grafeno, la electrónica basada en este material supera ampliamente la velocidad de sus equivalentes desarrollados con Silicio y podrían lograr CPUs con 25 a 50 veces más rapidez que las actuales con procesadores de Silicio. Las computadoras actuales basan su funcionamiento en chips cuyos componentes principales son transistores de Silicio, y este cambio puede intensificar la velocidad de los mismos CPUs.

Otra de las propiedades de este material es que permite una mejor conducción de las cargas eléctricas y esta es una de las razones que ha permitido a IBM romper la barrera física de los 100 100 GHz. Si tomamos en cuenta los tres o cuatro mil millones de cambios por segundo que un microprocesador moderno puede efectuar, IBM podría ser la clave en la búsqueda de la creación de nuevos dispositivos ultra-veloz en el campo de la electrónica y de las telecomunicaciones.

La compañía ha considerado que la movilidad de los portadores de carga en el Grafeno convierte en un candidato prometedor a dispositivos electrónicos de alta velocidad y al mismo tiempo se consigue fabricar transistores más pequeños y rápidos con materiales semiconductores.

Los detalles de la investigación del equipo del científico Avouris fueron publicados en distintos medios de divulgación científica como la revista Science y el New York Times, por mencionar algunos.

Fuente: electronicosOnline.com

Pixeles de color oleosos permitirán ver vídeos en tinta electrónica

Manipulando rápidamente aceites de colores y sobreponiéndolos unos sobre otros, una nueva técnica de electrohumedecimiento (ElectroWetting) podría llevar al desarrollo de dispositivos de tinta electrónica que puedan producir videos en color de alta resolución. Los dispositivosque utilizan el efecto EW podrían tener varias ventajas sobre los e-readers actuales y otros dispositivos de pantalla plana portátiles, la mayoría de los cuales están basados en tecnología electroforética (EPh).

El Dr. Han You y el profesor Andrew Steckl del Laboratorio de Nanoelectrónica de la Universidad de Cincinnati han probado de forma experimental el nuevo dispositivo por primera vez y los resultados se publicaron en un reciente número de la revista Applied Physics Letters.

Las nuevas pantallas EW consisten en pilas verticales de varias capas. Tres capas de aceites rojos, verdes y azules están separadas por dos capas intermedias de agua. Estas capas, junto con otras capas hidrófilas y otras hidrófobas forman una especie de bocadillo con los electrodos. Las capas de aceite coloreado también están divididas en filas alineadas para crear píxeles separados. Los investigadores construyeron dos prototipos de 1000-2000 píxeles, con tamaños de píxel de 200×600 µm2 y 300×900 µm2.

mecanismoEsquema del mecanismo (ver vídeo). Liquavista.

Para cambiar el color de la pantalla, se aplica una baja tensión a la capa de agua que toca a una de las capas de aceite coloreado, lo que produce el efecto EW. El efecto provoca que el aceite se mueva a un lado y sea reemplazado por agua, lo que permite que el aceite coloreado de debajo pase a ser visible. También se puede crear un fondo blanco aplicando tensión a las tres capas de la pila.

Utilizando una cámara de alta velocidad de 1000 frames por segundo, los investigadores pudieron medir la velocidad de los prototipos. Vieron que se tardaba 10 milisegundos en dejar visible un área de 200×600 µm2. La velocidad de cambio permite que se pueda dar soporte a vídeos, de forma similar a otras pantallas EW y de una forma mucho más rápida que los dispositivos EPh (que tardan 1 segundo). Como Steckl explicó, la pantalla de pila vertical también ofrece una alta resolución y pixeles más pequeños y brillantes en comparación con otros dispositivos.

“Hemos demostrado que la integración vertical (el enfoque de “pila”) de los píxeles EW puede funcionar”, dijo Steckl a Physorg. “Esto ahorra espacio, lo que permite el desarrollo de píxeles más pequeños y una resolución mayor. Por comparación, el enfoque lado a lado convencional utiliza sub-pixeles paralelos para cada color, por tanto el área es tres veces mayor. También, cada pixel necesita un filtro que produzca el color deseado, lo que resulta en una pérdida de brillo y un mayor coste. Sorprendentemente, nuestros resultados iniciales publicados en el artículo también mostraron que los píxeles integrados verticalmente tienen aproximadamente la misma velocidad de cambio que los píxeles EW convencionales”.

Además de las grandes velocidades, las pantallas reflectoras EW son mucho más finos, consumen menos energía y tienen un ángulo más amplio que los EPh. Los investigadores creen que, con estas ventajas y su alta resolución, la estructura de pila vertical ofrece gran potencial para una gran variedad de futuros lectores electrónicos y aplicaciones de panel plano, como comandos táctiles o animaciones.

“Estamos trabajando duro para mejorar el funcionamiento: mejores colores, mayor velocidad, etc.” dijo Steckl. “Creo que los lectores digitales con alta velocidad de vídeo, mucho color y bajo consumo están aún un poco lejos”.

Más información: H. You and A. J. Steckl. “Three-color electrowetting display device for electronic paper.” Applied Physics Letters 97, 023514 (2010).

Vídeo: http://www.liquavista.com/downloads/lqvOverviewPresentation.aspx

Este artículo ha sido traducido de Physorg y publicado bajo licencia CC by-sa

Fuente: Ciencia Traducida

____________________

Enlaces relacionados:

–  Apuntes Informática Aplicada al Trabajo Social. UMU. Introducción hardware

–  Fujitsu lanza el primer libro electrónico en color

Nanocircuitos flexibles se pueden generar con calor

El silicio sigue siendo el material de elección para los «chips» de ordenador, pero las propiedades electrónicas que lo hacen tan atractivo comienzan a desvanecerse al precisar  reducir sus dimensiones muy por debajo de unos pocos cientos de nanometro. El grafeno, sin embargo – una hoja de dos dimensiones de los átomos de carbono dispuestos en una nido de abeja-red como – sigue llevando a cabo sus funciones con escasa pérdida de calor en menores dimensiones, que le hace un candidato probable para suceder a la microelectrónica de silicio.

Pero no es suficiente para que el grafeno conducir bien la electricidad, sino que también debe ser semiconductor. El corte del grafeno en «nanoribbons», cada uno tan sólo 10 nanómetros de ancho, lo hace posible.  En 2007, dichos nanoribbons fueron usados para transistores de garfeno eficaces.  Cortar grafeno en nanoribbons de una anchura estándar es difícil usando métodos químicos convencionales, y también incluso con alternativas creativas – tales como cortar los nanotubos de carbono a lo largo y entonces desenrrolarlos – puede ser difícil de controlar.

Ahora Paul Sheehan de la US Naval Research Laboratory en Washington DC (EE.UU.) y Elisa Riedo  del Georgia Institute of Technology en Atlanta han desarrollado una alternativa al corte: «escriben» nanoribbons directamente sobre las láminas de carbono.

Líneas calientes

Sheehan y Riedo comenzaron con una hoja de óxido de grafeno – un aislante eléctrico – en lugar de grafeno.  Se calienta la punta de un pequeño dispositivo utilizado para microsocopía de fuerza atómica (AFM) a temperaturas entre 100 y 1000 ° C, entonces se movió sobre la superficie de óxido de grafeno. La punta caliente proporcionan suficiente energía para liberar a la mayoría de los átomos de oxígeno de la red, dejando rastros de grafeno casi puro en su estela.

«Usted acaba de escribir su línea», dice Sheehan. »  «Es el dibujo.»

Las líneas de 12 nanómetros de ancho es hasta 10000 veces más conductora que el óxido de grafeno que la rodea,  lo que les permite actuar como  «cables» eléctricos. Las impurezas de oxígeno todavía permanecen conectadas a las líneas de los «cables «para semiconductores a pesar de ser ligeramente más anchos que el límite de semiconductores de grafeno puro.

Riedo dice que la técnica no sólo aporta un mayor control sobre la posición y las propiedades de nanoribbons, sino  que también es relativamente fácil y barata de ejecutar. «Esto es algo que usted puede hacer en el aire con un AFM estándar», dice.

Sheehan dice que la facilidad y control que ofrece la técnica de óxido de grafeno podría hacerle un buen material para prototipos  de nanocircuitos, llamándola «placa universal » para la nanoelectrónica.

Yanwu Zhu de la Universidad de Texas en Austin, quien no estuvo involucrado con la investigación, afirma que la nueva técnica podría ser útil y se suma al creciente número de maneras de crear y manipular nanoribbons  de grafeno.

Referencia de la publicación:  Science, DOI: 10.1126/science.1188119

Fuente:  NewScientist

________________

Enlace relacionado:

–  Actualidad informática: Nanotecnología

Nanotubos de carbono como material para transistores

Investigadores suizos han desarrollado un transistor cuyo elemento crucial es un nanotubo de carbono, suspendido entre dos contactos, con excelentes propiedades electrónicas. Un enfoque novedoso de fabricación permitió a los científicos construir un transistor sin histéresis de puerta. Esto abre nuevas vías para la fabricación de nanosensores y componentes que consumen poca energía.

Los límites de la microtecnología convencional, basada principalmente en el silicio, se han alcanzado. Más pequeño y mejor sólo puede lograrse mediante el uso de nuevos materiales y tecnologías. Esta es la razón por la que los investigadores esperna grandes hechos de los nanotubos de carbono (CNT), túbulos ultrapequeño de unos pocos nanómetros de diámetro, hechos de carbón puro.

CNTs tienen propiedades electrónicas,  estructurales y mecánicas llamativos. El grupo de investigación liderado por Christofer Hierold, profesor de la Micro y nanosistemas en la ETH de Zurich, tiene como objetivo utilizar estos componentes en la nanoelectrónica. Él y su grupo de investigación, en particular, el estudiante de doctorado Matthias Muoth, han tenido éxito en la construcción de un transistor de efecto campo libre de histéresis basado en un CNT con nanocontactos .  Los investigadores lo publicaron recientemente en «Nature Nanotechnology».

Para construir el transistor, los investigadores permitieron crecer a un solo CNT entre dos barras de policisilico. Para un buen contacto eléctrico, se ha de depositar el vapor  del metal paladio en los extremos del túbulo de una manera muy precisa.  Los científicos incluyeron una tapa deslizante, la máscara de sombra, para proteger a la parte media de los CNT de la metalización no deseada. Un sustrato de silicio, recubierto de metal y colocado tres micrometros por debajo del CNT, actuó como control del terminal llamado puerta.

La fabricación exitosa del transistor con el CNT y  la interacción precisa de sus extremos con paladio no son los únicos aspectos decisivos para Christofer Hierold. Considera que el avance es el hecho de que el transistor no muestra lo que se llama histéresis de puerta.  La histéresis está ausente incluso a una humedad atmosférica del 45 por ciento.  Se refiere a esto como «un importante paso adelante para los componentes destinados a ser utilizados como sensores.»

La histéresis representa las propiedades no deseadas de un sistema electrónico.  Por ejemplo, si el voltaje en la puerta de control del transistor se incrementa y luego se reduce de nuevo, no puede haber un cambio no deseado en el umbral de tensión del transistor. Las propiedades del transistor en un punto de trabajo a continuación, dependerán de su historia, por ejemplo, a las tensiones de puerta que ha sido previamente expuestos. These undesired shifts in the threshold voltage also originate from charges that can be trapped on defects in the CNT or in oxides in their vicinity. Estos cambios no deseados en el umbral de voltaje también se originan de las cargas que pueden ser atrapados en los defectos del  CNT o de los óxidos cercanos.

El nuevo componente abre posibilidades interesantes de aplicación para sensores y otros componentes nano-electromecánicos. Por ejemplo podría ser el transistor utilizado en sensores de gas altamente sensibles o medidores de tensión, y también en un arreglo resonador como una nanobalanza. Los transistores  CNT también podrían ser muy útiles como filtros para recibir la frecuencia correcta en teléfonos móviles, ya que son más pequeños y consumen menos energía que los filtros de frecuencia convencional. Esto implica la utilización de excitaciones electromecánicas para causar  a un CNT, con una frecuencia característica, que vibre como una cuerda de guitarra. Las frecuencias restantes, por el contrario, no son capaces de excitar a los nanotubos.  Según el profesor de la ETH, «es de esperar que tales filtros nano-electromecánicos serán mejores que los puramente electrónicos.» Él dice que, en cualquier caso, una gran ventaja de los nuevos componentes es su baja demanda energética.

Artículo compelto en: PHYSORG.COM

________________

Enlaces de interés:

–  Actualidad informática: Nanotecnología

–  Transistores de nanotubos, nexo hombre-máquina

La marca CE puede tener otro significado

Original Marca  CE

Si ve una marca CE (un acrónimo de «Conformidad Europea») en cualquier aparato electrónico (incluidos los juguetes y productos sanitarios), es básicamente una garantía del fabricante de que el producto cumple todos los requisitos de seguridad de la Unión Europea.

Es obligatorio para los fabricantes para satisfacer todos los requisitos de la marca CE antes de que puedan vender sus productos en cualquiera de los países de la Unión Europea.

Algunas marcas CE en productos electrónicos pueden ser falsas

En algunos casos, la marca CE está mal y por lo tanto no todos los productos que lleven las letras C y E puede ser considerados seguros.  Hay  informes sin confirmar de que algunos productos hechos en China llevan la marca CE pero en este caso CE significa «China Export» (es decir, el producto se exporta desde China) y no «Conformidad Europea».

Afortunadamente, el estilo de letra y el espaciado entre las dos letras en el logo  «Exportación de China»  es un poco diferente por lo que no es difícil de percibir la marca CE falsa.  Las letras de la marca CE originales son como dos semicírculos de radio similar pero más grande y cuadrado, cuando se dibuja por completo, se reúnen entre sí.

China Export Mark

Fuente:   digital inspiration

____________________

Enlaces relacionados:

–   Apuntes Informática Aplicada a la Gestión Pública. UMU. Capitulo 12 Calidad

–   Apuntes Introducción a la Informática. Capítulo 6.  UMU. Periféricos de un ordenador

–   Fuentes de alimentación, para PC. Homologadas y compatibilidad electromagnética

Related Posts with Thumbnails

Calendario

noviembre 2024
L M X J V S D
« Nov    
 123
45678910
11121314151617
18192021222324
252627282930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa