admin

Categorías

Coobis

Electrónica

Transistores biodegradables a partir de sangre, leche y proteína de moco

Actualidad Informática. Transistores biodegradables a partir de sangre, leche y proteína de moc. Rafael Barzanallana. UMU

Investigadores de la Universidad de Tel Aviv (Israel) allanan el paso a una nueva era en la nanotecnología, los transistores hechos de sangre, leche y moco.

Las proteínas de la sangre, la leche y moco pronto podría sustituir al silicio para producir transistores, que amplifican las señales eléctricas y se encuentran en la base de la tecnología más moderna. Una de las ventajas más importantes de este descubrimiento es que estos transistores serán biodegradables.

Un equipo de investigadores, entre ellos los estudiantes Elad Mentovich y Netta Hendler del Departamento de Química de la Universidad de Tel Aviv y el Centro de Nanociencia y Nanotecnología , con el supervisor Shachar Richter y en colaboración con el Prof. Michael Gozin y el estudiante Bogdan Belgorodsky. , han unido la biología y la química para crear un automontaje de transistores a base de proteínas.

Cada proteína  tiene propiedades únicas y cuando se mezclan, juntas pueden crear un circuito completo con  capacidades electrónicas y ópticas con una gran flexibilidad en términos de conductividad, de almacenamiento de memoria , y  fluorescencia .

Las proteínas de la sangre pueden absorber oxígeno permitiendo a los investigadores agregar diferentes productos químicos para ajustar las propiedades de los semiconductores con el fin de crear propiedades tecnológicas específicas. Las proteínas de la leche, que son fuertes y estables en ambientes diferentes, forman las fibras que se convierten en los componentes básicos de los transistores. Por último, las proteínas de la mucosa tienen la capacidad para mantener la fluorescencia de colores rojo, verde y azul separados, creando juntos la emisión de luz blanca que es necesaria para la óptica avanzada.

Si esto puede ser ampliado, habrá una importante revolución en la tecnología a nanoescala. En primer lugar, habrá un cambio de una época de silicio a una era de carbono, y estos productos serán biodegradables, señala Mentovich.

Apple, Nokia y todas las grandes compañías electrónicas podrían finalmente ayudar a abordar el creciente problema de los desechos electrónicos, que  desbordan los vertederos de todo el mundo.

En segundo lugar, los transistores construidos a partir de las proteínas de la sangre, la leche y moco será ideales para la producción de dispositivos pequeños y flexibles. La tecnología actual que utiliza silicio es de 18 nanometros, pero en el caso de proteína de la sangre, por ejemplo, la película es de aproximadamente cuatro nanómetros.

Este avance en la electrónica biológica podría conducir a una nueva gama de tecnologías flexibles, pantallas, teléfonos móviles, tabletas, biosensores, y  chips de microprocesadores. La esperanza es que esto puede conducir a una tecnología más flexible y respetuoso con el medio ambiente .

Antenas moleculares

Actualidad Informática. Antenas moleculares. Rafael Barzanallana. UMU

Unos científicos han usado dos moléculas como antenas y han conseguido transmitir señales en forma de fotones individuales, desde una a la otra.

Una conexión de radio establecida mediante fotones individuales sería ideal para diversas aplicaciones de comunicación cuántica, como por ejemplo en la criptografía cuántica o en una computadora cuántica.

Las partículas individuales de luz son el medio elegido para transmitir bits cuánticos. En el futuro, estas unidades de información cuántica podrían sustituir en muchas aplicaciones a los bits convencionales si la computación cuántica logra despegar.

Puesto que un fotón solo no acostumbra a interactuar mucho con una molécula, los físicos tuvieron que usar ciertos «trucos» en sus experimentos, a fin de conseguir que la molécula receptora registrara la señal luminosa. Se valieron de dos capas dopadas con moléculas de tinte, separadas por varios metros y conectadas por un cable de fibra óptica. Y se trabajó con muestras enfriadas hasta 272 grados Celsius bajo cero, es decir, casi hasta el cero absoluto aproximadamente 273,15 grados  bajo cero.

Fuente: NANOTECNOLOGIA UDLAP

Skyrmion, la partícula que puede revolucionar la informática

Actualidad Informática. Skyrmion, la partícula que puede revolucionar la informática. Rafael Barzanallana. UMU

No es la partícula de Dios, y seguramente su estudio jamás merezca un premio Nobel -además, su descubridor ya está muerto-, pero el halo de misterio que rodea a los skyrmions guarda similitudes con el bosón de Higgs. También su trayectoria es parecida. La partícula que podría inaugurar una nueva era de la informática desde el punto de vista del almacenamiento de datos fue formulada a principios de los 1960, poco antes que las primeras teorías sobre el bosón. Su padre, el físico británico Tony Skyrme, fallecido en 1987, ha pasado de puntillas por la historia de la ciencia.

Se le recuerda como un investigador modesto, de poca ambición, y a pesar de que su modelo matemático -al principio, la existencia de los skyrmions era sólo una hipótesis- solucionaba de manera solvente un problema físico de la época, a saber, el comportamiento de las partículas subatómicas, no alcanzó una gran repercusión. Tuvo mala suerte. Al menos, fue lo suficientemente audaz como para nombrar la partícula con su propio apellido.

En los 60, su hallazgo fue eclipsado por la formulación teórica de un elemento esencial de la física de partículas, los quarks, por culpa de los cuales los skyrmions llegaron al final de los 70 fatigados, como un pariente pobre de este componente fundamental de la materia.

Sin embargo, los 80 arrancaron con la aceptación del modelo de Skyrme por parte de sus colegas, pero entonces apareció en escena la teoría de cuerdas, centrando de nuevo el interés de la comunidad científica. El skyrmion desapareció del mapa: se convirtió en una partícula de culto sólo recordada por algunos nostálgicos.

Skyrme falleció, sin honores, justo antes del desarrollo de una aplicación científica que, de rebote, representaría un revulsivo para el skyrmion. En 1985, Klaus von Klitzing había obtenido el Nobel de Física por sus avances en el campo del efecto hall cuántico. Desde entonces, los dispositivos electrónicos basados en esta nueva vía fueron capaces de testar múltiples estructuras, entre ellas los skyrmions. En los 90, por fin, los científicos los vieron con sus propios ojos. La edad dorada de la partícula estaba a punto de iniciarse.

La primera aplicación

En la literatura científica, se describe a los skyrmions como un vórtice de átomos que surge al aplicar, de forma controlada, una carga magnética sobre las partículas de ciertos materiales, de tal forma que los espines de los electrones, que en condiciones normales se alinean en la misma dirección, adquieren en los skyrmions una forma de trenza.

El skyrmion halló su utilidad en una tecnología emergente emparentada con la computación cuántica, la espintrónica, cuyo principal objetivo es el desarrollo de sistemas de almacenamiento y procesamiento de datos más potentes y dotados de una mayor capacidad, gracias al desarrollo de los bits cuánticos.

Ha sido ahora cuando un equipo de investigadores del grupo Wiesendanger de la Universidad de Hamburgo ha logrado, por primera vez, leer y escribir datos utilizando skyrmions, un hito científico que se postula como una posible revolución en el futuro de los discos duros. No sólo desde el punto de vista de su capacidad: atendiendo también a una reducción significativa de su tamaño. Esto puede dar lugar a discos duros del tamaño de un grano de arroz.

Artículo completo en: Teknautas

Selenio y fotófono

Actualidad Informática. Selenio y fotófono. Rafael Barzanallana. UMU

En 1873 un ingeniero británico, Willoughby Smith, descubrió algo realmente inusual en el selenio, por total y completa casualidad una vez más. Willoughby estaba involucrado en la fabricación e instalación de cables submarinos de telégrafo eléctrico, y se hallaba intentando diseñar circuitos de prueba que permitiesen comprobar que el cable submarino transmitía perfectamente según se iba soltando bajo el agua.

Para su circuito de prueba hacía falta un semiconductor, y Willoughby empleó cilindros de selenio gris (recuerda, la forma cristalina), que no funcionaron bien: eran inconsistentes en sus propiedades eléctricas, de modo que presentaban una resistencia en el laboratorio y otra distinta –mucho mayor –al meterlos bajo el agua. El británico no hizo lo que imagino que hubiera hecho yo –sustituir el selenio por otro semiconductor– sino que intentó determinar por qué el selenio cambiaba su resistencia eléctrica.

Tras realizar experimentos en laboratorio Willoughby llegó a una conclusión sorprendente, que publicó en Nature bajo el título Effect of Light on Selenium during the passage of an Electric Current (Efecto de la luz sobre el selenio durante el paso de una corriente eléctrica): el selenio gris era extraordinariamente sensible a la luz. Al iluminarlo su resistencia eléctrica disminuía, de modo que al probar los circuitos bajo la luz del Sol el selenio gris conducía relativamente bien –para ser un semiconductor, por supuesto– pero al sumergirlo en las profundidades y la consecuente oscuridad su resistencia aumentaba mucho. Esto era un problema para probar cables telegráficos, pero una propiedad utilísima para muchas otras cosas.

Se trataba del primer semiconductor fotosensible que conocíamos, y los ojos de los ingenieros de todo el mundo se pusieron a hacer chiribitas. Entre ellos se encontraba nada menos que Alexander Graham Bell, que se planteó lo siguiente: ¿no sería posible convertir la voz en pulsos luminosos en un emisor y luego recibir esos pulsos con un receptor de selenio para convertirlos en impulsos eléctricos? Junto con su ayudante, Charles Sumner Tainter, Bell puso manos a la obra y los dos hombres consiguieron su propósito en 1880.

El aparato, bautizado con el magnífico nombre de fotófono, era de una sencillez propia de los genios. El emisor tenía un espejo parabólico de gran tamaño con una bombilla en su foco, que recibía directamente la voz de quien hablaba. El sonido hacía vibrar el espejo, con lo que los rayos de luz eran reflejados en distintas direcciones cuando el espejo vibraba: el haz se “esparcía” o se “concentraba” según la forma del espejo vibrante.

El receptor, a su vez, tenía otro espejo parabólico con una pieza de selenio en el foco unida a un circuito eléctrico: allí pasaba justo lo contrario. El receptor de selenio recibía pulsos de luz acompasados a la luz que llegaba al espejo, de modo que el circuito recibía pulsos eléctricos cuando el selenio recibía luz y, en consecuencia, disminuía su resistencia eléctrica. El aparato funcionaba estupendamente bien e imagino que a muchos les hubiera parecido magia. A mí lo que me sorprende es su absoluta sencillez.

El fotófono fue eclipsado unos años más tarde por la radio, pero siguió utilizándose con usos muy concretos pero importantísimos. A diferencia de las ondas de radio, mucho más difíciles de enfocar, el fotófono permitía comunicarse a distancia y sin cables de un modo muy preciso, con lo que en la guerra era muchísimo más útil que la radio… siempre que hubiera una línea de visión ininterrumpida entre emisor y receptor, por supuesto. Ése era uno de sus puntos flacos, ya que la niebla, la lluvia o una cadena montañosa lo dejaban fuera de juego.

Sin embargo, Alexander Graham Bell lo consideró hasta su muerte su mayor invento –más importante que el teléfono–, y el concepto no es tan diferente del que utilizaríamos muchos años más tarde al desarrollar la fibra óptica, que también convierte la información en pulsos luminosos que luego se transforman, en el receptor, en impulsos eléctricos. Sin embargo, ahora ya no usamos selenio como hizo Bell.

Durante un tiempo el selenio fue muy utilizado como fotorreceptor en muchos circuitos fotosensibles, como los de los fotómetros en fotografía o incluso células fotoeléctricas que usaban luz en vez de radiación ultravioleta o infrarroja como las modernas. Y es que el selenio, como otros semiconductores fotosensibles, es capaz no sólo de disminuir su resistencia eléctrica ante la luz: es capaz, si las condiciones son las adecuadas, de generar una corriente eléctrica al exponerlo a la luz. Es un material no sólo fotosensible, sino fotovoltaico. De hecho, algunos de los fotómetros de selenio usados en fotografía ni siquiera necesitan una pila para funcionar, sino que la pieza de selenio genera el suficiente voltaje para el aparato al exponerlo a la luz.

Ampliar en: El Tamiz

Gafas de sol que cargan móviles

La capacidad inventiva de los ingenieros parece no tener limite y hemos conocido un proyecto liderado por un grupo de estudiantes de la Miami Ad School en colaboración con la marca de gafas Ray-Ban.

Estos estudiantes han desarrollado unas gafas de sol que incorporan en sus patillas unas placas solares con capacidad suficiente para cargar un terminal como el iPhone 5.

La solución no solamente es cómoda y liviana sino que además podría abrir nuevos caminos para que la autonomía de los móviles deje de ser un problema.

Fuente: GADGETMANIA

Nueve de noviembre, día del inventor en honor a Hedy Lamarr

Actualidad Informática. Nueve de noviembre, día del inventor en honor a Hedy Lamarr. Rafael Barzanallana. UMU

El día del inventor se conmemora el nueve de noviembre por ser el cumpleaños de Hedy Lamarr (registrada al nacer con el nombre Hedwig Eva Maria Kiesler), actriz de cine austríaca de los años 30 del pasado siglo. ¿Suena un poco extraño? ¿El día del inventor, conmemorado por el nacimiento de una actriz?

La historia de esta artista e inventora resulta tan fascinante. Hedy empezó a los 16 años sus estudios de ingeniería lo que, para la época, ya era bastante extraño. Si bien era considerada extremadamente inteligente, decidió dejar la carrera y dedicarse a la actuación. Con su talento y su belleza, logró conquistar a un magnate de la industria de las armas, con quien contrajo matrimonio teniendo sólo 19 años.

Hedy, que era totalmente consciente de su inteligencia, aprovechaba cada oportunidad que tenía de compartir con los colegas de su marido para observar y aprender. Y además, entre tanto magnate y cenas de negocios, conoció a figuras históricas como Hitler y Mussolini.

Pronto sería mundialmente famosa por la secuencia de la película comercial Éxtasis, en la que, por espacio de diez minutos, aparece completamente desnuda, primero al borde de un lago, y luego corriendo por la campiña checa. Por dicha escena se la conocería como la primera mujer en la historia del cine que apareciera desnuda en una película comercial.

El matrimonio se volvió tormentoso, y Hedy decidió huir a Estados Unidos a escondidas. Es allí donde tiene la oportunidad de retomar sus estudios de ingeniería, y donde su vida dará un vuelco para destacarse en un área completamente diferente.

Los conocimientos de armas y guerras que había obtenido de su esposo comenzaron a serle útiles: empieza a investigar sobre misiles y torpedos. Ella sabía que era difícil que países en guerra utilizaran misiles dirigidos por radio, ya que las señales de estos serían muy fáciles de interceptar. Resultaba demasiado riesgoso.

Y es aquí donde aparece la chispa, esa iluminación necesaria en la mente del inventor para saltar al estrellato. ¿Qué pasaría si dichas frecuencias pudieran modificarse continuamente? Se complicaría así muchísimo su intercepción.

Basándose en el diseño de una pianola, Hedy Lamarr inventó lo que sería el precursor del Espectro por salto de frecuencia, o una señal de radio que se transmite en forma de varias radiofrecuencias aleatorias, lo que hace que el enemigo que pudiese llegar a interceptar dichas señales sólo obtenga un ruido indescifrable. Después de algunos meses de trabajo, en 1942, Hedy y su nueva pareja, un músico estadounidense llamado George Antheil, obtuvieron la patente de su invención.

La tecnología diseñada por Hedy, que hoy se conoce como «Espectro ensanchado», se sigue utilizando en la actualidad para diversos aparatos electrónicos, de uso tanto militar como civil, principalmente en telecomunicaciones y transmisión de distintos tipos de datos.

Si bien Hedy Lamarr no logró pasar a la historia como una gran actriz, e incluso después de su incursión en la tecnología empezó a desaparecer y terminó su vida (murió el 19 de enero de 2000) de una forma más bien decadente (incluso fue sorprendida robando de tiendas), sin duda su legado ingenieril ha sido importantísimo para el desarrollo de las telecomunicaciones.

Fuente: esceptica

Transistores sinápticos

Actualidad Informática. Transistores sinápticos. Rafael Barzanallana. UMU

No hace falta ser un Watson para darse cuenta de que incluso los mejores superordenadores del mundo son asombrosamente máquinas ineficientes y de alto consumo energético.

Nuestro cerebro tiene más de 86000 millones de neuronas, conectadas por sinapsis que no sólo completan circuitos lógicos innumerables, sino que continuamente se adaptan a los estímulos, mediante el fortalecimiento de algunas conexiones al tiempo que se debilitan las demás. Lo llamamos proceso de aprendizaje, y permite el tipo de procesos computacionales rápidos y altamente eficientes que dan vergüenza a Siri y Blue gene

Los científicos de materiales en la Escuela de Ingeniería y Ciencias Aplicadas (SEAS) de Harvard han creado un nuevo tipo de transistor que imita el comportamiento de una sinapsis. El nuevo dispositivo modula simultáneamente el flujo de información en un circuito y se adapta físicamente a los cambios de señales.

La explotación de las propiedades inusuales de materiales modernos, en el transistor sináptico podría marcar el comienzo de un nuevo tipo de inteligencia artificial: no con algoritmos inteligentes sino mediante la propia arquitectura de un ordenador. Los hallazgos aparecen en la revista Nature Communications.

«Hay un interés extraordinario en la construcción de electrónica de bajo consumo en estos días», dice el investigador principal Shriram Ramanathan, profesor asociado de ciencias de los materiales en SEAS, Harvard. «Históricamente, las personas se han concentrado en la velocidad, pero con la velocidad viene la  disipación de energía. Con la electrónica cada vez más poderosa y omnipresente, podría tener un gran impacto al reducir la cantidad de energía que consumen.»

La mente humana, con toda su potencia de cálculo fenomenal, se ejecuta con aproximadamente 20 vatios de energía (menos de una bombilla del hogar), por lo que ofrece un modelo natural para los ingenieros.

«Hemos demostrado que es realmente análogo de la sinapsis en el cerebro», dice el coautor principal Jian Shi, un becario postdoctoral en SEAS. «Cada vez que una neurona inicia una acción y otra neurona reacciona, la sinapsis entre ellas aumenta la fuerza de su conexión. Y a más rapidez del pico de neuronas cada vez, más fuerte será la conexión sináptica. Esencialmente, se memoriza la acción entre las neuronas.»

En principio, un sistema de integración de millones de diminutos transistores y terminales sinápticas neuronales podría llevar la computación paralela a una nueva era de alto rendimiento ultraeficiente.

Mientras que los iones de calcio y los receptores efectuan un cambio en una sinapsis biológica, la versión artificial logra la mismo plasticidad con iones de oxígeno. Cuando se aplica un voltaje, estos iones se deslizan dentro y fuera de la red cristalina de una película muy delgada (80 nanómetros) de niquelato de samario, que actúa como el canal de sinapsis entre dos terminales de platino «dendrita» «axón» y. La concentración variable de iones en el niquelato aumenta o disminuye su conductancia – es decir, su capacidad para transportar información en una corriente eléctrica – y, al igual que en una sinapsis natural, la fuerza de la conexión depende del retardo de tiempo en el señal eléctrica.

Estructuralmente, el dispositivo consiste en el semiconductor  de niquelato intercalado entre dos electrodos de platino y adyacente a un pequeño depósito de líquido iónico. Un circuito externo multiplexor  convierte el tiempo de retardo en una magnitud de tensión que se aplica al líquido iónico, la creación de un campo eléctrico impulsa los iones ya sea hacia el niquelato o los elimina. Todo el dispositivo, sólo unos cientos de micrones de largo, está integrado en un chip de silicio.

El transistor sináptico ofrece varias ventajas inmediatas sobre los transistores de silicio tradicionales. Para empezar, no se limita al sistema binario de unos y ceros.

«Este sistema cambia su conductancia de una manera analógica, de forma continua, como la composición del material cambia,» explica Shi. «Sería bastante difícil de usar CMOS, la tecnología de circuitos tradicionales, para imitar una sinapsis, porque las sinapsis biológicas reales tienen un número prácticamente ilimitado de posibles estados, no sólo on u off.

El transistor sináptico ofrece otra ventaja: la memoria no volátil, lo que significa que incluso cuando se interrumpe la alimentación, el dispositivo recuerda su estado.

Además, el nuevo transistor es inherentemente eficiente con la energía. El niquelato pertenece a una clase inusual de materiales, llamado sistemas de electrones correlacionados, que pueden sufrir una transición aislante-metal. A una cierta temperatura – o, en este caso, cuando se expone a un campo externo – la conductancia del material cambia de repente.

«Aprovechamos la extrema sensibilidad de este material», dice Ramanathan. «Una muy pequeña excitación le permite obtener una señal grande, por lo que la energía de entrada necesaria para impulsar este cambio es potencialmente muy pequeña. Eso podría traducirse en un gran impulso a la eficiencia energética.»

El sistema niquelato también está bien posicionada para una perfecta integración en los sistemas basados ??en silicio existentes.

«En este trabajo se demuestra la operación a alta temperatura, pero la belleza de este tipo de dispositivo es que el comportamiento del» aprendizaje «es más o menos insensible a la temperatura, y eso es una gran ventaja», dijo Ramanathan.»Podemos operar en cualquier lugar entre la temperatura ambiente hasta por lo menos 160 Celsius.»

Por ahora, las limitaciones se refieren a los desafíos de la síntesis de un sistema de material relativamente inexplorada, y para el tamaño del dispositivo, lo que afecta a su velocidad. «En nuestro dispositivo de prueba de concepto, la constante de tiempo está realmente establecido por nuestra geometría experimental», dijo Ramanathan. «En otras palabras, hacer realmente un dispositivo súper rápido, lo único que tendría que hacer es limitar el líquido y colocar el electrodo de puerta más cerca de él.»

De hecho, Ramanathan y su equipo ya están planeando, con expertos de microfluidos en SEAS, para investigar las posibilidades y los límites de este «ultimate fluidic transistor

También cuenta con una subvención de la Academia Nacional de Ciencias para explorar la integración de transistores en los circuitos sinápticos bioinspirados, con L. Mahadevan, profesor  Lola England de Valpine de Matemática Aplicada,  de biología organicista y evolucionista y profesor de física.

«En SEAS es muy emocionante  establecer que somos capaces de colaborar fácilmente con personas de intereses muy diversos», dice Ramanathan.

Para el científico de materiales, mucha curiosidad deriva de la exploración de las capacidades de los óxidos correlacionados (como el niquelato utilizado en este estudio) a partir de las aplicaciones posibles.

«Hay que crear nuevos instrumentos para poder sintetizar estos nuevos materiales, pero una vez que eres capaz de hacer eso, de verdad tienes un sistema completamente nuevo de material cuyas propiedades son prácticamente inexploradas», dice Ramanathan. «Es muy emocionante tener esos materiales para trabajar, que se sabe muy poco sobre ellos y se tiene la oportunidad de construir conocimiento a partir de cero.»

Esta investigación fue financiada por la National Science Foundation (NSF), Army Research Office’s Multidisciplinary University Research Initiative, y la Air Force Office of Scientific Research..El equipo también se benefició de las instalaciones del Centro de Harvard para sistemas de nanoescala, miembro de la Red de Infraestructura Nacional de Nanotecnología apoyado por la NSF. Sieu D. Ha, un becario postdoctoral en SEAS, fue el coautor principal, coautores adicionales incluyen estudiante graduado Usted Zhou y Frank Schoofs, un exestudiante postdoctoral.

Fuente: Jian Shi, Sieu D. Ha, You Zhou, Frank Schoofs, Shriram Ramanathan. A correlated nickelate synaptic transistor.Nature Communications, 2013; 4 DOI: 10.1038/ncomms3676

Discos basados en grafeno

Actualidad Informática. Discos basados en grafeno. Rafael Barzanallana. UMU

Investigadores  de Swinburne University of Technology han demostrado el potencial de un nuevo material para lograr el almacenamiento óptico de la información de forma segura.

En su más reciente artículo de investigación publicado en Scientific Reports, los investigadores Xiangping Li Qiming Zhang, Xi Chen y el profesor Min Gu demostraron el potencial para registrar codificación holográfica en un compuesto de polímero.

«Tradicionalmente, la información se registra como datos binarios en un disco. Si el disco se rompe, la información no se puede recuperar», afirmó el Director del Centro de Micro-Fotónica de Swinburne, el profesor Min Gu. «Este es un importante costo de operación de los centros de datos grandes, que se componen de miles de conjuntos de discos con múltiples copias físicas de los datos El nuevo material permite el desarrollo de super-discos, lo que permitirá a la información ser recuperada, incluso de piezas dañadas.»

El óxido de grafeno es similar al grafeno, descubierto por Andre Geim y Konstantin Novoselov, que recibieron el Premio Nobel 2010 de Física por este descubrimiento revolucionario. El grafeno es muy fuerte, ligero, flexible, casi transparente, y es un excelente conductor del calor y electricidad.  El óxido de grafeno tiene propiedades similares, pero también presenta una propiedad fluorescente fundamental que se puede utilizar en bioimagen y para la grabación óptica multimodo.

Al enfocar  pulsos ultracortos de un haz láser en el polímero de óxido de grafeno, los investigadores crearon un aumento 10-100 veces en el del óxido de grafeno junto con una disminución en su fluorescencia. (El índice de refracción es la medida de la desviación de la luz a medida que pasa a través de un medio.)

«El hecho único de la modulación del índice de refracción gigante, junto a la propiedad de fluorescencia del polímero de óxido de grafeno ofrecen un nuevo mecanismo para la grabación óptica multimodo», dijo el profesor Gu.

Para demostrar la viabilidad de este mecanismo, los investigadores codificaron la imagen de un canguro en un holograma generado por ordenador. Después, el holograma se representa como una grabación en tres dimensiones para el polímero de óxido de grafeno. Los patrones codificados en el holograma no podían ser vistos como una imagen de microscopio normal, pero se pudo recuperar en el modo de difracción.

«El índice de refracción gigante de este material se muestra prometedor para la fusión de almacenamiento de datos con la holografía de para la  codificación segura», dijo el profesor Gu.

«Esta característica interesante no sólo aumenta el nivel de seguridad de almacenamiento, sino que también ayuda a reducir los costos de operación de los centros de datos grandes que dependen de múltiples copias físicas para evitar la pérdida de datos».

Los investigadores afirman que también podría revolucionar la televisión de pantalla plana y tecnología de células solares. «Más importante aún, el grafeno se ha considerado como un reemplazo revolucionario para el silicio, que es la plataforma de tecnologías de la información actuales basados en la electrónica», dijo el Dr. Xiangping Li.

«El índice de refracción gigante descubrimos muestra la promesa del para fusionar la electrónica y la fotónica para la plataforma de la próxima generación de tecnologías de la información. »

Ampliar en:

Fotónica: El grafeno permite detectores de luz en un chip

Nature

 

 

Rafael Barzanallana

Ordenador fabricado con nanotubos de carbono

Actualidad Informática. Ordenador fabricado con nanotubos de carbono. Rafael Barzanallana. UMU

En química, se denominan nanotubos a estructuras tubulares cuyo diámetro es del tamaño del nanómetro. Existen nanotubos de muchos materiales, tales como silicio o nitruro de boro pero, generalmente, el término se aplica a los nanotubos de carbono.

Los nanotubos de carbono son una forma alotrópica del carbono, como el diamante, el grafito o los fullerenos. Su estructura puede considerarse procedente de una lámina de grafito enrolladas sobre sí misma.1 Dependiendo del grado de enrollamiento, y la manera como se conforma la lámina original, el resultado puede llevar a nanotubos de distinto diámetro y geometría interna. Estos estan conformados como si los extremos de un folio se uniesen por sus extremos formando el susodicho tubo, se denominan nanotubos monocapa o de pared simple. Existen, también, nanotubos cuya estructura se asemeja a la de una serie de tubos concéntricos, incluidos unos dentro de otros, a modo de muñecas matrioskas y, lógicamente, de diámetros crecientes desde el centro a la periferia. Estos son los nanotubos multicapa. Se conocen derivados en los que el tubo está cerrado por media esfera de fulereno, y otros que no están cerrados.

Un equipo de ingenieros de la Universidad de Stanford en Estados Unidos ha demostrado su viabilidad para fabricar dispositivos electrónicos. En concreto han utilizado nanotubos de carbono para construir el primer ordenador fabricado totalmente con este prometedor material. Anteriormente, se habían fabricado algunos circuitos con nanotubos de carbono, pero ésta es la primera vez que se desarrolla un ordenador completamente con este material.

Los ingenieros  han logrado poner en marcha un proceso para fabricar circuitos basados en nanotubos de carbono y han logrado construir un circuito simple pero eficaz que muestra que es posible realizar tareas computacionales utilizando esta tecnología. Esta computadora sólo tiene 178 transistores y es capaz de desarrollar simultáneamente tareas básicas de cálculo y clasificación, además tiene un sistema operativo básico que le permite cambiar de un proceso a otro.

Ampliar en: NANOTECNOLOGÍA UDLAP
magen: vitroid via photopin cc

Impresión de nanoestructuras con material de automontaje

Actualidad Informática. Impresión de nanoestructuras con material de automontaje. Rafael Barzanallana. UMU

Un equipo multiinstitucional de ingenieros ha desarrollado un nuevo enfoque para la fabricación de nanoestructuras para la industria de semiconductores y de almacenamiento magnético. Este enfoque combina la tecnología de impresión de inyección avanzada de tinta  de arriba-  abajo con un enfoque de abajo-arriba (bottom-up) que consiste automontaje de bloques de copolímeros, un tipo de material que puede formar espontáneamente estructuras ultrafinas.

El equipo, formado por nueve investigadores de la Universidad de Illinois en Urbana-Champaign, la Universidad de Chicago y la Universidad de Hanyang en Corea, fue capaz de aumentar la resolución de su estructura de fabricación compleja de aproximadamente 200 nanómetros a aproximadamente 15 nanómetros. Un nanómetro es la mil millonésima parte de un metro, el ancho de una molécula de ADN de doble cadena.

La capacidad de fabricar nanoestructuras de polímeros, ADN, proteínas y otros materiales «blandos» tiene el potencial de permitir nuevas clases de electrónica, dispositivos de diagnóstico y sensores químicos. El reto es que muchos de estos materiales son fundamentalmente incompatibles con los tipos de técnicas litográficas que se utilizan tradicionalmente en la industria de circuitos integrados.

Técnicas de impresión recientemente desarrollados, de ultra alta resolución mediante inyección de tinta tienen un cierto potencial, con la resolución demostrada hasta 100-200 nanómetros, pero hay retos importantes para lograr la verdadera dimensión de nanoescala. «Nuestro trabajo demuestra que los procesos de autoensamblaje de polímero pueden proporcionar una forma de evitar esta limitación», dijo John Rogers, profesor en Ciencia de los Materiales e Ingeniería de la UIUC.

Rogers y sus colegas informan sobre sus hallazgos en la edición de septiembre de la revista Nature Nanotechnology. La combinación de impresión de chorro de copolímeros en bloques de auto-montaje permitió a los ingenieros lograr una resolución mucho más alta, según lo sugerido por  Onses Serdar, un científico postdoctoral en UIUC. Onses obtuvo su doctorado en la Universidad de Wisconsin con Paul Nealey, ahora profesor Brady W. Dougan de Ingeniería Molecular de Universidad de Chicago y coautor del artículo de Nature. «Este concepto resultó ser muy útil», dijo Rogers.

Los ingenieros utilizan materiales de automontaje para aumentar los procesos de fotolitografía tradicionales que generan patrones para muchas aplicaciones tecnológicas. Primero se crean ya sea un patrón topográfico o químico con los procesos tradicionales. Para el artículo de Nature , esto se hizo en el IMEC en Bélgica, un centro de investigación independiente de nanoelectrónica. El laboratorio de Nealey es pionero de este proceso de autoensamblaje dirigido de copolímeros en bloque con nanopatrones químicos.

Beneficios de impresión e-jet

La forma avanzada de impresión de inyección de tinta que los ingenieros utilizan para depositar localmente bloque de copolímeros se denomina impresión electrohidrodinámica o impresión e-jet, que funciona de forma muy parecida a las impresoras de inyección de tinta de oficinistas usan para imprimir en papel. «La idea es que el flujo de materiales de pequeñas aberturas, excepto e-jet es una versión especial de alta resolución de las impresoras de chorro de tinta que puede imprimir por debajo de  varios cientos de nanómetros», dijo Onses. Y debido a que e-jet puede manejar naturalmente tintas fluidas,  sirve perfectamente para las suspensiones de solución de nanotubos, nanocristales, nanocables y otros tipos de nanomateriales.

«El aspecto más interesante de este trabajo es la capacidad de combinar las técnicas de ‘arriba-abajo’ de impresión de chorro con procesos de abajo-arriba de auto-ensamblaje, de una manera que abre nuevas posibilidades en la litografía – aplicable a los materiales blandos y duros por igual «, dijo Rogers.

Fuente: M. Serdar Onses, Chiho Song, Lance Williamson, Erick Sutanto, Placid M. Ferreira, Andrew G. Alleyne, Paul F. Nealey, Heejoon Ahn, John A. Rogers. Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly. Nature Nanotechnology, 2013; 8 (9): 667 DOI: 10.1038/nnano.2013.160

Related Posts with Thumbnails

Calendario

noviembre 2024
L M X J V S D
« Nov    
 123
45678910
11121314151617
18192021222324
252627282930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa