admin

Categorías

Coobis

Física

Física

Memoria F-RAM permanente que permite mantener los datos diez años de los datos

Ramtron ha anunciado la disponibilidad de su memoria de 8-Megabit (Mb) F-RAM en un encapsulado FBGA.  El FM23MLD16 es una  RAM permanente de 8-Mbit, 3 voltios,  que ofrece ciclos de lectura/grabación de rápido acceso, virtualmente ilimitados, con bajo consumo de energía.

Es ccompatible a nivel de pines con la RAM estática asincróna (SRAM), está orientada hacia sistemas de control industriales tales como robótica, soluciones del almacenaje RAID de red, impresoras multifuncións, sistemas de navegación en autos, y como anfitrión de otros diseños de sistemas basados en SRAM.

Fuente:  EETimes europe

Un Nobel de Física predice que el fin de la electrónica convencional llegará en diez años

El Nobel de Física 2007 Albert Fert cree que existen «limitaciones físicas» que hacen predecir que «el fin» de la electrónica convencional llegará dentro de diez años, aunque existen «oportunidades» de encontrar un recambio, como la spintrónica, disciplina que él investiga.

Fert (Carcassone, Francia, 1938), quien ganó el Premio Nobel en 2007 junto con el alemán Peter Grünberg por descubrir, por separado, la «magneto-resistencia gigante», ha comparecido hoy en rueda de prensa con motivo de su investidura, mañana, como doctor «honoris causa» por la Universidad de Zaragoza.

La magneto-resistencia es un efecto mecánico cuántico que ha permitido multiplicar por cincuenta la capacidad de almacenamiento en discos duros de ordenador, aparatos musicales, aplicaciones electrónicas y cámaras de vídeo.

Al aumentar la capacidad de almacenamiento de los discos duros hasta centenares de gigabites, reduciendo la unidad de almacenamiento y haciendo de la magnetoelectrónica, o la espintrónica, un nuevo campo de la ciencia llamado a sustituir a la electrónica actual.

Fert ha insistido, en esta línea, en que la espintrónica es «una gran oportunidad» para la nanoelectrónica y la nanotecnología, que son una «maravillosa oportunidad» para la física, porque «abre muchos caminos para predecir determinados fenómenos».

La nanotecnología es muy importante, ha dicho, para otras disciplinas científicas, como la Biología, la Medicina o la Química, y para llegar a crear dispositivos útiles que generen nuevos materiales y, por añadidura, nuevos fenómenos físicos.

UN CAMPO «PROMETEDOR»

Los desarrollos más conocidos de la spintrónica son los relacionados con la lectura de información de discos duros, pero hay un campo «prometedor», ha dicho Fert, relacionado con la mejora de las aplicaciones para telecomunicaciones, con dispositivos que puedan emitir y recibir microondas de modo muy eficiente y que se puede aplicar a los teléfonos móviles.

Sobre el descubrimiento que le hizo merecer el Nobel, Albert Fert ha reconocido que fue difícil predecir las «implicaciones económicas» que llegaron después de las relacionadas con la computación, como las que tiene para los iPods, las cámaras fotográficas o los teléfonos móviles.

Se trató, ha precisado, de un descubrimiento de «investigación básica», un tipo de investigación que tiene mucha importancia.

Fert también se ha referido a la necesidad de que los países europeos inviertan en tecnología para hacer frente a la «amenaza» que suponen para Europa, en este campo, nuevos países, sobre todo de Asia, como China y Singapur, además de Japón.

Aragón cuenta con un Instituto de Investigación en Nanotecnología, una ciencia que, ha dicho el profesor Ricardo Ibarra, de la Universidad de Zaragoza, nace con «gran potencia» porque aborda problemas que están «en el límite de las disciplinas convencionales» y que abre, por tanto, nuevas perspectivas en el ámbito, por ejemplo, de la terapia y el diagnóstico en Medicina.

Fuente: hoy tecnología

Las cinco “leyes” de la informática: Moore, Rock, Wirth, Metcalfe y Machrone

La ley de Moore no está demostrada. Más aún, es indemostrable que “el número de transistores integrados en un chip se duplica cada 24 meses,” (en los 1970 cada 18 meses). Evidencia empírica, que algún dejará de ser válida. Una “ley” que no es una ley. Una ley indemostrable. La ley de Rock afirma que cada 4 años el coste de una fábrica de chips se duplica (luego algún día dejará de ser económicamente rentable). La ley de Wirth afirma que el software se ralentiza más deprisa de lo que acelera el hardware (por eso, para hacer lo mismo, cada día se necesita un ordenador más potente); algunos la llaman ley de Page. La ley de Machrone afirma que el próximo ordenador personal que querrás comprarte siempre tiene el mismo precio, unos 1000 euros (ahora parece que habrá que bajarlo a 500 euros). La ley de Metcalfe afirma que el valor económico de una red crece con el cuadrado del número de usuarios (a más usuarios, más beneficios). Leyes que no son leyes, sólo evidencia empírica; leyes que algún día dejarán de ser válidas. Nos cuenta las 5 leyes de la informática Philip E. Ross, “5 Commandments. The rules engineers live by weren’t always set in stone,” IEEE Spectrum, December 2003. En inglés a este tipo de leyes les llaman “rule-of-thumb” algo que podríamos traducir al español como “la cuenta de la vieja.” Reglas (elevadas a “leyes”) que nos permiten estimar cosas.

¿Matará la ley de Rock a la ley de Moore? Sí, según Jack Schofield, que afirma en ”When the chips are down,” The Guardian, 29 July 2009, que la economía y no la física (ingeniería) parará la ley de Moore, aludiendo a la ley de Rock. Un ejemplo, Intel se está gastando (ha presupuestado) 7000 millones de dólares para la mejora (upgrade) de sus 7 plantas de fabricación de chips en EEUU. Global Foundries (chips AMD) ha empezado a construir una planta en el Estado de Saratoga, New York, por 4200 millones de dólares que empezará a funcionar en 2012.

Intel ha pasado de fabricar chips con transistores cuyo canal tenía 3000 nm. (3 micrómetros) a finales de los 1970, hasta los actuales 45 nm., con un objetivo a corto plazo en los 22 nm. Algunos proclaman que el límite teórico son los 18 nm., que se alcanzarán en 2014. Leo Jelinek, analista jefe la fábrica de semiconductores iSuppli afirma que la barrera de 18 nm. no es física en 2014 no es física sino económica: será demasiado caro fabricar chips más integrados.

Si el canal de los transistores no puede ser más pequeña, la única manera de fabricar chips con más transistores es hacer las obleas (y los chips) más grandes. La tecnología actual utiliza obleas de 30 cm. y se espera que para 2017 ya haya obleas de 45 cm. Otra posibilidad es hacer chips en 3D (tres dimensiones).

Obviamente, el futuro es impredecible.

Fuente: Francis (th)E mule Science’s News

_________________

Enlaces relacionados:

Desarrollan un nuevo material que podrí­a ser en el futuro de las computadoras lo que el silicio es a los ordenadores de hoy en día

Construyendo un chip molecular para computadoras

Ordenadores en la actualidad. Apuntes Informática Aplicada al Trabajo Social.

¿Para qué se necesita una teoría cuántica de la gravedad? Para evitar los viajes cuánticos al pasado

La teoría de la gravedad de Einstein no prohíbe viajar en el tiempo hacia el pasado (curvas temporales cerradas). En sistemas macroscópicos parece imposible y se asume la existencia de principios (”censores cósmicos”) que evitan su existencia (básicamente que nada puede superar la velocidad de la luz). Sin embargo, cuando se unen la mecánica cuántica y la teoría de la gravedad la cosa cambia y no sabemos cómo evitar que un estado cuántico viaje al pasado. ¿Algún problema? Bueno, si fuera posible, los sistemas de cifrado cuántico, supuestamente absolutamente seguros, no lo serían, como nos cuenta David Lindley en “Time Travel Beats Quantum Mechanics,” Physical Review Focus, 2 June 2009, haciéndose eco del artículo técnico de Todd A. Brun, Jim Harrington, Mark M. Wilde, “Localized Closed Timelike Curves Can Perfectly Distinguish Quantum States,” Physical Review Letters 102: 210402, 2009 (ArXiv preprint). La existencia de curvas temporales cerradas (”closed timelike curves”, CTCs) en un contexto cuántico no es un problema para la mayoría de los investigadores ya que se cree que la teoría “correcta” de la gravedad cuántica evitará la existencia de este tipo de “inconsistencias” en nuestro conocimiento actual. Pero realmente será así. Todavía, nadie lo sabe.

Dibujo20090807_circuit_using_closed_timelike_curvesEl trabajo de Todd Brun et al. muestra que un espía podría utilizar curvas temporales cerradas (CTCs) para descifrar “al vuelo” los mensajes codificados utilizando cualquier sistema de criptografía cuántica sin que ni el emisor ni el receptor se dieran cuenta. La paradoja del abuelo, viajas al pasado y matas a tu abuelo, parece que prohíbe terminantemente la existencia de CTCs. Desde el punto de vista clásico todo el mundo lo tiene muy claro. Pero en 1991, David Deutsch de la Universidad de Oxford, Gran Bretaña, publicó un artículo en el que demostraba que las curvas temporales cerradas para ciertos estados cuánticos pueden evitar esta paradoja. Más aún, utilizando técnicas de teoría cuántica de la computación demostró que estas paradojas no pueden darse en un contexto cuántico. Ello no quita que las CTCs tengan otro tipo de ”defectos” cuánticos, como violaciones de la unitariedad y del principio de correspondencia, pero que nos parecen menos “antiintuitivos.” Además, también son computacionalmente interesantes, permitiendo, por ejemplo, la clonación de estados cuánticos. El artículo técnico es David Deutsch, “Quantum mechanics near closed timelike lines,” Phys. Rev. D 44: 3197-3217, 1991.

Sin entrar en detalles técnicos, lo más importante es que este trabajo apunta a la necesidad de una teoría cuántica de la gravedad en un contexto práctico (ya hay sistemas de cifrado cuántico comerciales) muy diferente al razonamiento habitual que requiere dicha teoría sólo para entender las singularidades ocultas en los agujeros negros o los primeros estadios de la Gran Explosión en cosmología teórica, muy alejados de lo experimentalmente verificable en laboratorio.

Fuente: Francis (th)E mule Science’s News

__________________

Enlaces relacionados:

Tutoriales y divulgación de Física

Biografía de Richard Feynman

La enigmatica cena de Einstein en Barcelona

Investigadores encuentran que los errores cuánticos funcionan

Físicos de la Universidad de Queensland han encontrado que el campo emergente de la computación cuántica puede ser más estable de lo que se pensaba anteriormente.

El Dr. Tom Stace, de la Escuela de Matemáticas y Física de la UQ, ha estudiado el efecto de los errores en los ordenadores cuánticos y encontró que incluso con un 50% de pérdida de componentes aún podría funcionar.

La investigación teórica realizada junto con el Dr. Andrew Doherty de la UQ y el Dr. Sean Barrett de la Universidad Macquarie, se publicó recientemente en la revista científica Physical Review Letters.

“Nuestros resultados demuestran que pueden tolerarse errores y pérdidas relativamente grandes, y por lo tanto puede confirmar que los ordenadores cuánticos son genuinamente factibles”, dijo el Dr. Stace.

“Lo que demuestra nuestro trabajo es que un dispositivo cuántico teóricamente útil puede construirse incluso si un 10% de sus componentes sufren un error, o hasta un 50% de sus componentes se han perdido por completo”.

El Dr. Stace dijo que aunque la computación cuántica estaba aún en sus albores, tiene el potencial de revolucionar los ordenadores debido a su potencial de ser mucho más potente que los ordenadores actuales, especialmente en campos tales como la banca donde las transacciones seguras son primordiales.

“Pero uno de los retos principales de la computación cuántica es diseñar un dispositivo que sea insensible a los errores, incluso aunque sus elementos constituyentes sean en sí mismos propensos al error”, dijo.

“Los dispositivos cuánticos son muy sensibles al ruido de su alrededor, y su rendimiento puede verse gravemente impedido por los errores. Nuestra investigación se centra, por tanto, en cómo podríamos construir un dispositivo útil a partir de componentes imperfectos”.

“Este trabajo teórico nos da una idea cuantitativa de cómo de precisa tiene que ser la ingeniería cuántica para hacer dispositivos útiles”.

Fuente: Ciencia Kanija
Bajo licencia Creative Commons

___________________

Enlaces relacioandos:

Habrá ordenadores portátiles con coprocesadores cuánticos a temperatura ambiente algún día

El fí­sico español Cirac gana el Príncipe de Asturias de Investigación Científica

Computadores cuánticos, más cerca de la realidad

Nuevo material que supone avance en la computación cuántica

Científicos descubren que la fuerza de la luz tiene una energía de “empuje”

Un equipo de investigadores de la Universidad de Yale ha descubierto una fuerza de la luz “repulsiva” que puede usarse para manipular componentes en microchips de silicio, lo que significa que futuros nanodispositivos podrían estar controlados por la luz en lugar de la electricidad.

El equipo descubrió anteriormente una fuerza de la luz “atractiva” que podría manipularse para mover componentes en interruptores semiconductores de diminutos sistemas micro y electro mecánicos en un chip. Los científicos han descubierto ahora una fuerza repulsiva complementaria. Los investigadores habían teorizado la existencia de ambas fuerzas desde 2005, pero la segunda había estado sin demostrarse hasta ahora. El equipo, liderado por Hong Tang, profesor asistente en la Escuela de Ingeniería y Ciencia Aplicada de Yale, informa de sus hallazgos en la publicación on-line avanzada del 13 de julio de Nature Photonics.

“Esto completa el cuadro”, dijo Tang. “Hemos demostrado que esta es una fuerza de luz bipolar con componentes atractivos y repulsivos”.

Las fuerzas de luz atractivas y repulsivas que descubrió el equipo de Tang son distintas fuerza de presión de radiación de la luz, la cual empuja un objeto cuando la luz brilla sobre él. En lugar de esto, empujan o tiran en los laterales de la dirección en la que viaja la luz.

Anteriormente, los ingenieros usaron la fuerza atractiva que descubrieron para mover componentes de un chip de silicio en una dirección, tal como tirar de un interruptor a nanoescala para abrirlo, pero fueron incapaces de empujarlo en la dirección opuesta.

Usar ambas fuerzas significa que ahora tienen control completo en ambas direcciones. “Hemos demostrado que estas son fuerzas ajustables que podemos usar en ingeniería”, dijo Tang.

Para crear la fuerza repulsiva, o el “empujón”, en un chip de silicio, el equipo dividió un rayo de luz infrarroja en dos rayos separados y forzó a cada uno a viajar una longitud distinta de un nanocable de silicio, llamado guía de onda. Como resultado, los dos rayos de luz quedan desfasados uno respecto al otro, creando una fuerza repulsiva con una intensidad que puede controlarse – cuanto más desfasado estén los dos rayos, mayor será la fuerza.

“Podemos controlar cómo interactúan los rayos de luz”, dijo Mo Li, asociada de posdoctorado en ingeniería eléctrica en Yale y autor principal del artículo. “Esto no es posible en el espacio libre – sólo es posible cuando la luz está confinada en las guías de onda de nanoescala que se colocan muy cerca entre sí en el chip”.

“La fuerza de la luz es intrigante debido a que funciona de forma opuesta a los objetos cargados”, dijo Wolfram Pernice, otro profesor de posdoctorado en el grupo de Tang. “Las cargas opuestas se atraen entre sí, mientras que los rayos de luz desfasados se repelen en este caso”.

Estas fuerzas de luz pueden algún día controlar dispositivos de telecomunicaciones que requerirían mucha menos energía pero serían mucho más rápidos que sus homólogos actuales, comenta Tang. Un beneficio añadido de usar luz en lugar de electricidad es que puede ser enviada a través de un circuito sin casi interferencia en la señal, y se elimina la necesidad de un gran número de cables eléctricos.

Fuente: Ciencia Kanija

Bajo licencia Creative Commons

________________

Enlaces relacionados:

Tutoriales y divulgación sobre Física

Apuntes informática. Universidad de Murcia

¿Qué son los memristores?

En 1971 un ingeniero eléctrico llamado Leon Chua que tenía cierta inclinación por las matemáticas, se dio cuenta de que la electrónica carecía de fundamentos matemáticos rigurosos, por lo que se propuso derivarlos.

Creía que en el conjunto de componentes básicos para circuitos (compuesto por el clásico trío: resistor, capacitor e inductor) había algo que faltaba.

Para comprobarlo Chua examinó las cuatro magnitudes básicas que definen un circuito eléctrico: carga eléctrica, corriente, flujo magnético y voltaje. Las matemáticas indicaban que con cuatro magnitudes interrelacionadas, deberían aparecer seis clases de relaciones.

La carga eléctrica y la corriente se relacionan entre si por definición, puesto que la segunda es la variación que se da en la primera a lo largo del tiempo.

Lo mismo sucedía con el flujo magnético y el voltaje. Por definición, el voltaje es la variación en el tiempo que experimenta el flujo magnético.

Chua ya tenía dos de las 6 asociaciones posibles, y sabía que otras 3 correspondían a los tres elementos básicos de los circuitos tradicionales:

Un resistor (o resistencia) es un dispositivo que crea un voltaje cuando la corriente pasa a su través.

Un capacitor (o condensador) es un dispositivo que para cierto voltaje dado almacena cierta cantidad de carga.

Un inductor (o bobina) es un dispositivo que crea un flujo magnético cuando es atravesado por una corriente.

La sexta (y desconocida) relación sugería entonces que debería existir un cuarto tipo de dispositivo que relacionase la carga y el flujo magnético. ¿Pero dónde estaba ese dispositivo? No se sabía.

Lo único que pudo hacer Chua entonces fue ponerle nombre (lo bautizó memristor, un cruce entre los términos memory y resistor que podríamos definir como “resistencia con memoria”) y determinar la clase de cosas que este dispositivo podría hacer.

Según él, el memristor debería generar un voltaje a partir de una corriente al igual que hacen las resistencias pero de un modo mucho más complejo y dinámico. Chua imaginó que este eslabón perdido de la electrónica podría “recordar” la corriente que había fluido a su través en instantes pasados.

Su trabajo era teóricamente muy elegante pero indemostrable. ¿Cómo es posible que nadie hubiera visto algo así nunca? No es de extrañar que poco después del nacimiento ideológico del memristor, Chua abándonase el concepto.

Y así permaneció 29 años hasta que Stan Williams (de los Laboratorios Hewlewtt-Packard en Palo Alto, California) creó accidentalmente en el año 2000 el primer dispositivo resistencia-con-memoria.

Williams y su equipo se preguntaban si podría crearse un interruptor rápido de de baja potencia conectando entre si dos diminutas resistencias de dióxido de titanio, de modo que la corriente de una pudiera usarse para – de algún modo – conmutar la resistencia en la otra en forma de encendido y apagado.

Y Williams descubrió que en efecto podía, pero que la resistencia en esta clase de interruptores se comportaba de un modo tan errático que resultaba imposible de predecir empleando modelos convencionales.

Durante tres años Williams no pudo explicar lo que sucedía, y entonces – gracias al chivatazo de un colega – descubrió el trabajo de Leon Chua en 1971. ¡Aquello fue una revelación! Las ecuaciones que Williams había creado para tratar de describir el funcionamiento de sus resistencias interconectadas se parecían muchísimo a las derivadas por Chua en su trabajo teórico.

Además Williams pudo explicar por qué nunca se había visto un memristor con anterioridad. Su efecto depende de movimientos a escala atómica, por lo que solo pude apreciarse cuando se trabaja con dispositivos a nanoescala. En escalas milimétricas, los memristores son esencialmente invisibles.

¿Pero qué es lo que sucedía en las resistencias interconectadas de Williams?

En su estado puro de unidades de repetición compuestas por un átomo de titanio y dos de oxígeno, el dióxido de titanio es semiconductor. Pero si calentamos el material, algunos átomos de oxígeno se van dejando burbujas cargadas eléctricamente que hacen que este comience a comportarse como un metal.

En los interruptores de Williams, la resistencia superior está hecha con un semiconductor puro, y la inferior de un metal deficiente en oxígeno. Cuando se aplica un voltaje al dispositivo, este empuja a las burbujas con carga del metal hacia arriba, lo cual reduce radicalmente la resistencia del semiconductor, convirtiéndole en un verdadero conductor. Cuando se aplica un voltaje en la otra dirección el tiovivo gira en sentido contrario; las burbujas descienden de nuevo a la capa inferior y la resistencia superior vuelve a su estado de semiconductor.

Lo increíble es que cada vez que se desconecta el voltaje, el tiovivo se detiene y la resistencia permanece congelada. Cuando se vuelve a conectar el voltaje, el sistema es capaz de “recordar” en qué punto se encontraba “despertando” en el mismo nivel de resistencia que mostraba antes del apagado.

No hace falta que os diga el potencial de esta tecnología. Imaginaos que podamos remplazar las memorias flash por otras mucho más pequeñas, densas y rápidas (se podría grabar información en unos pocos nanosegundos, empleando apenas unos picojulios de energía) que careciesen de transistores, y que una vez escritas conservaran los datos incluso aunque se les privase de energía. Una nueva treta para que siga cumpliéndose la ley de Moore.

¿Es este el fin de la historia? Si solo hablásemos de un gran avance en componentes electrónicos así sería. Pero es que los memristores parecen tener también la respuesta al modo en que funciona nuestro cerebro.

Si queréis saber cómo, mañana os hablaré de un ser monocelular (un extraño moho baboso llamado Physarum polycephalum) que es capaz de recordar cosas a pesar – lógicamente – de carecer de neuronas. Y por supuesto, también hablaré de las sinapsis en nuestros cerebros y de cómo el flujo de los iones de sodio y potasio a través de las membranas de nuestras neuronas recuerda tremendamente al funcionamiento de los memristores.

¿Marcará este nuevo conocimiento el nacimiento de una nueva era en inteligencia artificial? Solo el tiempo lo dirá.

Información obtenida del artículo Memristor minds: The future of artificial intelligence (autor: Justin Mullins para New Scientist).

Fuente: Maikelnai’s blog

Sanciones para quienes vendan productos electrónicos sin cumplir las normas europeas

Muchas empresas no son conscientes de su obligación a la hora de cumplir con la legislación sobre tratamiento de residuos electrónicos y seguridad de los mismos. Por ello, Fape (Asociación Española de Fabricantes de Pequeños Electrodomésticos) realiza periódicamente chequeos de los productos que se encuentran en el mercado y en la última revisión ha detectado hasta 18 empresas importadoras o comercializadoras con graves incumplimientos normativos.

Las pequeñas tiendas que venden electrodomésticos también están afectadas por esta normativa, ya que tienen que saber que en el caso de desaparición de la empresa importadora (o si es declarada insolvente), el responsable último de estos productos ilegales será el comercio que proceda a su venta. Por ello, estas tiendas deben tomar las precauciones necesarias para no verse inmersos en responsabilidades que ignoran.

Primeros expedientes sancionadores
Así, las infracciones medioambientales se han denunciado ante las administraciones autonómicas, con competencias en esta materia. Por su lado, para los casos que pueden afectar a la seguridad de las personas por el incumplimiento de normativas técnicas, las denuncias se han interpuesto ante el Ministerio de Industria y el Instituto Nacional de Consumo.

Entre las empresas denunciadas se encuentran las que comercializan marcas como Lavazza, Hyundai, Singer, Melitta, Airlux, Super Chef, Sauna Belt, Beaba, öptima, Magimix, Turbo Plus, Zasprom, Sunny o Masster Plus, entre otras.

Por su parte, las administraciones competentes ya han abierto expedientes sancionadores como fruto de las denuncias y una vez que han realizado las primeras indagaciones.

Fuente: Channelpartners.es

Computadores cuánticos, más cerca de la realidad

Demostrado el procesado cuántico del estado sólido.

Los ordenadores de mañana podrían ser cuánticos, no clásicos, usando las extrañas propiedades del mundo cuántico para incrementar vastamente la memoria y velocidad del procesado de información. Pero fabricar tales partes de cálculo cuántico a partir de un conjunto estándar hasta el momento se ha mostrado como una tarea difícil.

Ahora, el físico Leonardo DiCarlo de la Universidad de Yale en New Haven, y sus colegas han hecho el primer procesador cuántico de estado sólido, usando técnicas similares a la industria de los chips de silicio. El procesador ha usado programas conocidos como algoritmos cuánticos para resolver dos problemas distintos. El trabajo se publica en la revista Nature.

Los sistemas clásicos usan una serie de 0 y 1, o bits, para transportar la información. Dos bits, por ejemplo, pueden combinarse para formar 00, 11, 01 ó 10. Pero en los sistemas cuánticos hay una propiedad conocida como superposición, donde todas estas combinaciones pueden tener lugar al mismo tiempo. Esto incrementa enormemente la cantidad de información que puede almacenarse y la velocidad a la que pueden procesarse.

Los bits cuánticos, o qubits, también pueden entrelazarse — el estado de uno de los qubit influye en el estado de otro incluso a una distancia considerable. Un computador cuántico usaría qubits entrelazados para procesar información.

Trabajo sólido

Los algoritmos cuánticos han sido procesados anteriormente, pero sólo en sistemas exóticos usando lásers con potentes imanes. Para hacer algo más similar a un ordenador se necesita un sistema de estado sólido.

DiCarlo hizo su dispositivo a partir de dos qubits transmon. Son diminutas piezas de un material superconductor que constan de una película de Niobio sobre una oblea de óxido de aluminio con huecos grabados en la misma. Una corriente puede “canalizarse” a través de estos huecos – otra propiedad especial del mundo cuántico, donde ondas y partículas pueden cruzar barreras sin abrir una brecha en ellas. Los dos qubits están separados por una cavidad que contiene microondas, y todo el sistema está conectado a una corriente eléctrica.

“El atractivo de nuestro procesador es que es un dispositivo de estado sólido completo”, dice DiCarlo. Se realizó usando técnicas industriales estándar. Pero la analogía con los ordenadores comunes no debería sobrevalorarse, advierte — el dispositivo funciona a apenas una fracción de grado sobre el cero absoluto y requiere de una tecnología especial de refrigeración.

Los investigadores controlaron el sistema usando un “tono” de microondas con una frecuencia que provoca que los qubits se entrelacen. Entonces se aplica un pulso de voltaje para controlar cuánto tiempo permanecen entrelazados los dos qubits y en su estado superpuesto. Un mayor entrelazamiento permite a los qubits procesar problemas más complejos.

DiCarlo fue capaz de mantener los qubits entrelazados durante un microsegundo, lo cual es lo más avanzado que se ha logrado, dice.

La llamada del qubit

El sistema procesó dos algoritmos escritos específicamente para sistemas cuánticos.

El primero es el algoritmo de búsqueda de Grover, también conocido como la búsqueda inversa de la guía de teléfonos. El procesador esencialmente lee todos los números de la guía a la vez para encontrar la respuesta correcta. “Al final el qubit estará en un estado, no superpuesto, y esa es la respuesta”, dice DiLorio.

El segundo algoritmo, más simple, el algoritmo de Deutsch-Jozsa, prueba si el lanzamiento de una moneda es imparcial o no.

El procesador de DiCarlo logró un impresionante acierto del 80% en la búsqueda de la guía de teléfonos y un 90% en el algoritmo del lanzamiento de la moneda.

Para leer la respuesta, DiCarlo usó un tono de microondas en la misma frecuencia que la cavidad del sistema. “Dependiendo de en qué estado se encuentra el qubit, la cavidad resonará a una frecuencia concreta. Si el tono se transmite a través de la cavidad, sabemos que está en el estado correcto”, comenta.

Pero esta técnica no podría leer la respuesta en un sistema con muchos qubits más, dice el experto en computación cuántica Hans Mooij de la Universidad Tecnológica de Delft en los Países Bajos. El desarrollo del procesador son buenas noticias, añade Mooij. “Este es un paso necesario”, comenta. “Si esto puede hacerse, lo siguiente también puede realizarse”.

DiCarlo es cauteloso. “Hemos hecho un procesador cuántico muy simple”, dices. “No es de ninguna manera un ordenador cuántico”.

Ahora está trabajando para dar al procesador más qubits, y por lo tanto más potencia de procesamiento. Cree que aumentar la escala a tres o cuatro qubits será relativamente simple, pero más allá el problema se hace mucho más complejo, y el tiempo de coherencia necesario será difícil de obtener. Mooij concuerda: “Para pasar de tres o cuatro a diez necesitarán dar otro gran paso”.


Artículo de referencia: DiCarlo, L. et al, Nature, doi:10.10383/nature08121 (2009)
Autor: Katharine Sanderson
Fecha Original: 28 de junio de 2009
Enlace Original

Fuente: Ciencia Kanija

_______________________

Enlaces relacionados:

Nuevo material que supone avance en la computación cuántica

Habrá ordenadores portátiles con coprocesadores cuánticos a temperatura ambiente algún día

El fí­sico español Cirac gana el Príncipe de Asturias de Investigación Científica

Nokia investiga un sistema de alimentación en base a las ondas del ambiente

Según cuenta el artículo Wireless Power Harvesting for Cell Phones el Nokia Research Center en Cambridge está trabajando en el desarrollo de la tecnología necesaria para que los teléfonos móviles puedan cargarse de forma inalámbrica utilizando la energía electromagnética procedente de cualquier aparato eléctrico, incluyendo la emitida por las antenas móviles, de radio y televisión o los routers Wi-Fi.

Esto sobre el papel significaría que teóricamente nunca habría que cargar el móvil, ya que éste estaría en continua recarga aprovechando la radiación electromagnética que en mayor o menor medida nos rodea continuamente.

En el MundoReal™ este tipo de conversión de energía, de electromagnética a eléctrica, se hace a escalas muy pequeñas, insuficientes para cargar un teléfono móvil o permitir renunciarnos al cargador de red convencional aunque sea más de vez en cuando. Es el casos de los chips tipo RFID pasivos, que no disponen de fuente de alimentación propia sino que se activan por inducción al recibir la señal de radio enviada por el lector de chips. Se utilizan por ejemplo en las etiquetas antirrobo o de identificación de animales domésticos y consisten en un pequeño circuito rodeado de una antena que –además de enviar la señal de identificación– capta la energía que lo hace funcionar.

El objetivo del dispositivo de Nokia es que sea capaz de obtener 50 milivatios de potencia “del aire”, aunque los actuales prototipos desarrollados por la compañía apenas obtienen entre 3 y 5 milivatios.

Como ejemplo de lo dificultoso que actualmente obtener energía por esta vía, ingenieros de Intel y la Universidad de Washington, en Seattle, han desarrollado recientemente un sensor de temperatura y humedad que obtiene la energía para funcionar de una antena de TV que emite con un megavatio de potencia y está situada a 4,1 kilómetros de su laboratorio. Pero de ella únicamente son capaces de obtener 60 microvatios. Para obtener 50 milivatios se necesitarían 1.000 señales electromagnéticas fuertes.

Hace un par de años, investigadores del MIT consiguieron transmitir energía eléctrica sin cables acoplando dos bobinas de cobre con la misma frecuencia de resonancia magnética. Su WiTricity, como la bautizaron, era capaz de iluminar una bombilla de 60 vatios, siempre que no estuviese más allá de dos metros de distancia.

Los experimentos de transmisión de energía inalámbrica se iniciaron en el Siglo XIX y durante todos estos años se han ideando y probado diversos métodos con distintos resultados, aunque de momento ninguno satisfactorio microsiervoso al menos de aplicación práctica inmediata. Uno de los pioneros en este campo fue Nikola Tesla con la construcción a principios del Siglo XX de la torre Wardenclyffe en Nueva York, que disponía de una antena de 60 metros para la emisión de energía, aunque nunca llegó siquiera a probarse por falta de fondos.

Fuente: microsiervos

________________

alicatamiento y reformas
compañias seguros medicos
diseño paginas web
diseño web barcelona
trabajar en casa
Zodiaco

Related Posts with Thumbnails

Calendario

noviembre 2024
L M X J V S D
« Nov    
 123
45678910
11121314151617
18192021222324
252627282930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa