Física
Física
Científicos de la Universidad de Exeter han descubierto un nuevo método para producir grafeno más barato y fácilmente.
El grafeno es un material formado por el elemento químico carbono (elemento del grupo IV de la tabla periódica, como el silicio y el germanio), puro sin ningún añadido, sus átomos están dispuestos formando un patrón regular con estructura hexagonal, es similar al grafito (otro compuesto de carbono), pero con una estructura de láminas de un átomo de espesor. Una de sus características más destacadas es que es muy ligero, por ejemplo una lámina de un metro cuadrado tiene una masa de tan sólo 0,77 miligramos. A su vez es 200 veces más fuerte que el acero y su densidad es semejante a la de la fibra de carbono, y comparado con el acero es cinco veces más ligero.
Artículo completo en: Blasting.news
Accede al «post» completo en: Bandas de Möbius de luz
Un proyecto conjunto de investigación de científicos de Europa, Canadá y Estados Unidos de Norteamérica, ha logrado generar en laboratorio las tan conocidas bandas de Möbius, pero en este caso la novedad es que se han conseguido mediante la polarización de la luz, experimento que confirma una predicción teórica: el campo electromagnético de la luz para asumir esta forma tan peculiar.
Según el Dr. Robert W. Boyd, profesor de la óptica en las universidades de Ottawa y Rochester, «este es uno de los pocos ejemplos conocidos de una estructura tipo Möbius que aparece en la naturaleza«. Añadió, «estas cintas demuestran la diversidad de estructuras que puede poseer un haz de luz en, escalas de distancia de sublongitud de onda muy pequeñas«.
Investigadores del Laboratorio Lawrence National Livermore han desarrollado micro retículos de aerogel de grafeno con una arquitectura diseñada utilizando una técnica de impresión 3D, conocida como escritura directa de tinta. Los aerogeles asi impresos permitirán un mejor almacenamiento de energía, sensores, nanoelectrónica, catálisis y separaciones.
Los aerogeles de grafeno impresos en 3D tienen una gran área superficial, excelente conductividad eléctrica, son ligeros, tienen rigidez mecánica y muestran supercompresibilidad (hasta el 90 por ciento de deformación en compresión). Además, los micro retículos de aerogel de grafeno muestran un orden de magnitud de mejora en comparación con otro materiales de grafeno y mucho mejor transporte de masa.
Un aerogel es un material sintético poroso, ultraligero derivado de un gel, en la que el componente líquido del gel ha sido reemplazado con un gas.
Los intentos anteriores de creación de aerogeles de grafeno producían una estructura de poros en gran medida al azar, con exclusión de la capacidad de adaptar para aplicaciones específicas el transporte y otras propiedades mecánicas del material tales como separaciones, baterías de flujo y sensores de presión.
«Hacer los aerogeles de grafeno con macroarquitecturas a medida para aplicaciones específicas con un método de montaje controlable y escalable sigue siendo un reto importante que hemos sido capaces de abordar», dijo el ingeniero Marcus Worsley, coautor del trabajo. «La impresión 3D hace posible diseñar de forma inteligente la estructura de poros del aerogel, permitiendo el control de transporte de masa (los aerogeles típicamente requieren gradientes de alta presión para conducir el transporte de masa a través de ellos debido a la pequeña y tortuosa estructura de poros) y la optimización de las propiedades físicas, tales como la rigidez . Este desarrollo debe abrir el espacio de diseño para el uso de los aerogeles en aplicaciones novedosas y creativas».
Durante el proceso, las tintas de óxido de grafeno (GO) se preparan combinando una suspensión acuosa de GO y silicio para formar una tinta homogénea, altamente viscosa. Las tintas GO se cargan en un cilindro y se extruyen a través de una microboquilla dando lugar al patrón de estructuras 3D.
Fuente: EE Times europe
Un material eléctricamente conductor, con capas que se asemejan al grafeno (láminas de grafito), se sintetizó en condiciones suaves utilizando una molécula bien conocida, que permite un buen acoplamiento electrónico de iones de níquel y materiales orgánicos. El nuevo material poroso presenta una alta conductividad eléctrica como material, que es potencialmente modulable y tiene una dependencia de la temperatura inusual, lo que sugiere una nueva física.
El nuevo material poroso es un sólido cristalino, estructuralmente conductor eléctrico modulable con elevada área superficial;tales materiales son buscados para aplicaciones en el almacenamiento de energía y para la investigación de la física fundamental de materiales en capas bidimensionales.
Las estructuras metal-orgánico (MOF) son materiales híbridos orgánico-inorgánico que tradicionalmente han sido estudiados para almacenamiento de gas o aplicaciones de separación debido a su gran área superficial. Lograr buenos conductores eléctricos a partir de estos materiales aislantes, normalmente ha sido un desafío, como conductores intrínsecos altamente porosos podrían ser utilizados para una variedad de aplicaciones, incluyendo el almacenamiento de energía. Los investigadores del Instituto de Tecnología de Massachusetts y la Universidad de Harvard han demostrado que la combinación de una molécula orgánica, 2,3,6,7,10,11-hexaiminotrifenileno (abreviado como HITP), con iones de níquel en solución acuosa de amoníaco y aire, origina el automontaje de un polvo negro poroso altamente conductor, Ni3 (HITP)2. El nuevo material se compone de pilas de hojas de dos dimensiones infinitas, que se asemejan al grafito, con una conductividad eléctrica a temperatura ambiente de ~ 40 S/cm.
La conductividad de este material es comparable a la de grafito y entre las más altas de las MOF conductoras reportados hasta la fecha. Además, la dependencia de la temperatura de la conductividad muestra una relación lineal entre 100 K y 500 K, lo que sugiere un mecanismo de transporte de carga inusual que no ha sido observado anteriormente en semiconductores orgánicos, y por lo tanto queda por investigar. En su forma original, el material podría ser utilizado para supercondensadores y aplicaciones de electrocatálisis. Tras la exfoliación, es decir, despegando las capas sucesivas, se espera que el material se comporte como un análogo de grafeno con banda prohibida modulable y propiedades electromagnéticas, sugiriendo nuevos usos y propiedades cuánticas exóticas en la física de estado sólido.
Fuente:»High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue,» Journal of the American Chemical Society 136, 8859–8862, 2014. DOI: 10.1021/ja502765n
Científicos han llevado a cabo una simulación que explica la colisión entre dos cúmulos de galaxias. Los cúmulos de galaxias son los objetos más grandes que existen en el universo. Son colecciones de cientos de miles de galaxias que se juntaron por la gravedad. Ejemplos raros, de grupos capturados en el acto de colisión parecen desafiar la opinión aceptada de que la materia oscura está compuesta por partículas pesadas.
En general, los cúmulos de galaxias crecen en tamaño mediante la fusión entre sí para ser cada vez más grandes. Las fuerzas gravitacionales provocan que se aproximen lentamente en el tiempo, a pesar de la expansión del universo. El sistema conocido como «El Gordo», el grupo más grande conocido de galaxias, es a su vez el resultado de la colisión entre dos grandes grupos. Se encontró que el proceso de colisión comprime el gas dentro de cada grupo, a temperaturas muy altas de manera que está brillando en la región de Rayos X del espectro. En el espectro de Rayos X, esta nube de gas tiene forma de cometa con dos colas largas que se extienden entre los densos núcleos de los dos cúmulos de galaxias. Esta configuración distintiva ha permitido a los investigadores establecer la velocidad relativa de la colisión, que es extrema (~ 2.200 kilometros/segundo), ya que pone al límite lo que está permitido por la actual teoría de la materia oscura.
Estos ejemplos raros y extremos de grupos capturados en el momento de la colisión parecen estar desafiando la opinión aceptada de que la materia oscura está compuesta de partículas pesadas, ya que tales partículas en realidad no se han detectado, sin embargo, a pesar de los esfuerzos que se realizan para encontrarlas mediante el acelerador LHC (Large Hadron Collider Particle) en Ginebra y el LUX (Gran Experimento Xenon subterráneo), un detector de materia oscura bajo tierra en los Estados Unidos. En opinión de Tom Broadhurst, «es aún más importante encontrar un nuevo modelo que permita que la misteriosa materia oscura se entienda mejor.» Broadhurst es uno de los autores de un modelo de ondas de materia oscura publicado en Nature Physics año pasado.
Este nuevo trabajo de investigación ha supuesto interpretar el gas observado y la materia oscura de «El Gordo», hidrodinámicamente a través del desarrollo de un modelo interno de cálculo que incluye la materia oscura, que comprende la mayor parte de la masa, y que puede ser observada en la región de Rayos X del espectro visible debido a su extremadamente alta temperatura (100 millones Kelvin). El Dr. Broadhurst y el Dr. Molnar han logrado obtener una solución computacional única para esta colisión debido a la forma de cometa de gas caliente, y los lugares y las masas de los dos núcleos de materia oscura que han pasado por el uno al otro en un ángulo oblicuo a una velocidad relativa de aproximadamente 2200 km/s. Esto significa que la liberación total de energía es mayor que la de cualquier otro fenómeno conocido, con la excepción del Big Bang.
Fuente: Sandor M. Molnar, Tom Broadhurst. A HYDRODYNAMICAL SOLUTION FOR THE “TWIN-TAILED” COLLIDING GALAXY CLUSTER “EL GORDO”. The Astrophysical Journal, 2015; 800 (1): 37 DOI: 10.1088/0004-637X/800/1/37
Hay pantallas que indican al conductor las direcciones para circular, la velocidad o hacia que lado girar, en el parabrisas del vehículo. Algunos sistemas vienen directamente de fábrica, otros se consiguen en el mercado de accesorios, pero ninguno de ellos incorporan la realidad aumentada como el próximo dispositivo Navion de WayRay.
En lugar de lanzar pequeñas flechas de giro en el campo de visión, Navion proyecta flechas holográficas que siguen el camino delante del coche y también la vía donde tiene que girar. No hay necesidad de mirar a la pantalla de navegación en la consola central para averiguar si la voz de robot que pronuncia todo mal está diciendo tomar este desvío o el siguiente. Navion muestra flechas verdes a lo largo de la ruta correcta, justo en frente de tus ojos. No requiere auricular.
Navion utilizará controles de gestos, pero mientras los ojos del conductor seguirán siendo viendo la ruta, es posible que desee mantener sus manos sobre el volante. La página web de WayRay dice que los controles de gestos del sistema funcionarán tan fácilmente como tocando botones físicos y girando palancas, pero cualquiera que haya tratado de maniobrar con una Xbox Kinect se mostrará escéptico sobre esa afirmación. También hay un componente de control de voz, que al menos mantiene sus manos donde deben estar.
WayRaym con sede en Suiza, fabricante de Navion dice que el sistema funcionará con un smartphone y cualquier coche. Estará listo para el envío para el otoño de 2015, y puede inscribirse en la página web de WayRay para obtener actualizaciones por correo electrónico.