Física
Física
La ley de Moore (aunque es una observación, no una ley de la naturaleza) es en parte la responsable del avance increíble de la humanidad durante el siglo XX.
La imagen muestra lo mejor de la electrónica de los 90 del siglo pasado, en su máxima expresión: Un Apple Newton, una videocámara VHS de JVC, un portátil Toshiba, un reloj de pulsera, un teléfono Motorola Dynatac, una cámara de fotos Polaroid y un Walkman. Hoy, todo eso puede hacerse, con mejor calidad y de manera más eficiente desde un teléfono móvil (y además es uno que ya, irónicamente, podríamos considerar obsoleto, el iPhone 4).
Fuente: GIZMODO
¿Y si fuera posible que las vidrios de las ventanas de nuestra vivienda y los parabrisas del coche pudieran generar corriente eléctrica a partir de fenómenos atmosféricos tales como viento y la lluvia? Esta tecnología ya existe y se ha verificado que funciona, al menos en experimentos de laboratorio. El dispositivo es un vidrio electrocrómico alimentado por dos sistemas de recuperación de energía del ambiente. Investigadores del Georgia Institute of Technology han publicado los resultados de su desarrollo en la revista ACS Nano. La tecnología se fundamenta en algo tan sencillo como es la electricidad estática generada por la fricción entre dos materiales, este fenómeno se conoce desde hace muchos años, se trata del efecto triboeléctrico. El vidrio está equipado con nanogeneradores triboeléctricos que recuperan la electricidad estática proveniente de su contacto con la lluvia y el viento.
Ampliar en: Blasting News
Investigadores de la Universidad Tecnológica de Chalmers han descubierto que una superficie grande de grafeno es capaz de preservar el espín electrónico durante un período prolongado, y comunicarlo a mayores distancias que antes se habían conocido. Esto ha abierto la puerta para el desarrollo de la espintrónica, con el objetivo de fabricar memorias más rápidas de alta eficiencia energética los procesadores de las ordenadores. Los resultados serán publicados en la revista Nature Communications .
«Creemos que estos resultados atraerán mucha atención en la comunidad de investigación y pondrán el grafeno en el mapa de aplicaciones en componentes de espintrónica«, dice Dash Saroj, que lidera el grupo de investigación de la Universidad Tecnológica Chalmers.
La espintrónica se basa en el estado cuántico de los electrones, y la tecnología ya está siendo utilizad en discos duros avanzados para el almacenamiento de datos y acceso a memoria magnética aleatoria. Pero en estos caso la información basada en el espín sólo necesita moverse unos pocos nanómetros, o millonésimas de milímetro. ¿Qué es una suerte, porque el espín es una propiedad de electrones que en la mayoría de los materiales es muy efímera y frágil.
Sin embargo, existen grandes ventajas en la explotación del espín como un portador de información, en lugar de, o además de las cargas eléctricas. La espintrónica podrían lograr procesadores significativamente más rápidos y con menos consumo de energía que en la actualidad.
El grafeno es un candidato prometedor para ampliar el uso de la espintrónica en la industria electrónica. La película fina de carbono no sólo es un excelente conductor eléctrico, sino también tiene teóricamente la rara habilidad de mantener los electrones con el espín intacto.
«En futuros componentes basados ??en el espín, se espera que los electrones sean capaces de viajar varias decenas de micrómetros con sus espines alineados. Metales, tales como aluminio o cobre, no tienen la capacidad de manejar esto. Grafeno parece ser el único material posible en este momento«, dice Saroj Dash.
Hoy en día, el grafeno se produce comercialmente por unas pocas empresas que utilizan una serie de métodos diferentes, todos los cuales se encuentran en una fase temprana de desarrollo.
En pocas palabras, se podría decir que el grafeno de alta calidad solo se puede obtener en trozos muy pequeños, mientras que las grandes superficies de grafeno se producen de forma que la calidad es demasiado baja o tiene otros inconvenientes desde el punto de vista de la industria electrónica.
Pero esa suposición general está siendo seriamente cuestionada por los resultados presentados por el grupo de investigación de Chalmers. Han llevado a cabo sus experimentos utilizando grafeno CVD, que se produce a través de deposición de vapor químico. El método da al grafeno muchas arrugas, aspereza y otros defectos.
Pero también tiene ventajas: Hay buenas perspectivas para la producción de grandes superficies de a escala industrial. El grafeno CVD también se puede quitar fácilmente de la lámina de cobre sobre la que crece y se levanta sobre una oblea de silicio, que es el material estándar de la industria de los semiconductores.
Aunque la calidad del material está lejos de ser perfecta, el grupo de investigación muestra los parámetros de espín que son hasta seis veces más altos que los reportados previamente para el grafeno CVD sobre un sustrato similar. «Nuestras mediciones muestran que la señal de espín se conserva en los canales de grafeno que son de hasta 16 micrómetros de largo. La duración durante el cual los espines permanecen alineados se ha medido y es más de un nanosegundo«, dice Chalmers, quien es el primer autor del artículo .
«Esto es prometedor«, ya que sugiere que los parámetros del espín se pueden mejorar aún más a medida que desarrollamos el método de fabricación.
Los investigadores se están centrando en qué medida la corriente de espín se puede comunicar, por ejemplo en un nuevo material o el reemplazo de metales o semiconductores con grafeno. El objetivo, más bien es una forma completamente nueva de realizar operaciones lógicas y almacenamiento de información. Un concepto que, de tener éxito, llevaría la tecnología digital un paso más allá de la actual dependencia de los semiconductores.
«El grafeno es un buen conductor y no tiene huecos de la banda. Pero en espintrónica no hay necesidad de intervalos de banda para cambiar entre encendido y apagado, uno y cero. Esto es controlado por las orientaciones arriba o abajo de los espines de los de electrones«, Saroj Dash explica.
Un objetivo a corto plazo ahora es construir un componente lógico que, no sea muy diferente de un transistor, y se componga de grafeno y materiales magnéticos.
La espintrónica eventualmente pueden reemplazar completamente la tecnología de semiconductores, es una cuestión abierta, aún falta gran cantidad de investigación. Pero el grafeno, con sus excelentes habilidades de conducción de espín, es altamente probable que cuentan en este contexto.
Fuente:M. Venkata Kamalakar, Christiaan Groenveld, André Dankert, Saroj P. Dash. Long distance spin communication in chemical vapour deposited graphene. Nature Communications, 2015; 6: 6766 DOI: 10.1038/ncomms7766
Un equipo de investigadores de la Universidad de Cambridge han desentrañado uno de los misterios del electromagnetismo, que podría permitir el diseño de antenas suficientemente pequeñas para ser integradas en un chip electrónico. Estas ultra-pequeñas antenas – la llamada «última frontera» del diseño de semiconductores – serían un enorme avance para las comunicaciones inalámbricas.
En los nuevos resultados publicados en la revista Physical Review Letters, los investigadores han propuesto que las ondas electromagnéticas se generan no sólo de la aceleración de los electrones, sino también de un fenómeno conocido como ruptura de la simetría. Además de las implicaciones para las comunicaciones inalámbricas, el descubrimiento podría ayudar a identificar los puntos en los que las teorías del electromagnetismo clásico y la mecánica cuántica se superponen.
El fenómeno de la radiación debido a la aceleración de electrones, identificado por primera vez hace más de un siglo, no tiene contrapartida en la mecánica cuántica, donde se supone que los electrones saltan de mayor a menor estados de energía. Estas nuevas observaciones de radiación resultantes de ruptura de simetría del campo eléctrico pueden proporcionar algún vínculo entre los dos campos.
El propósito de cualquier antena, ya sea en una torre de comunicaciones o un teléfono móvil, es lanzar energía al espacio libre en forma de ondas electromagnéticas o de radio, y recoger la energía desde el espacio libre para alimentar el dispositivo. Uno de los mayores problemas en la electrónica moderna, sin embargo, es que las antenas son todavía bastante grandes e incompatibles con los circuitos electrónicos – que son ultra-pequeños y cada vez más pequeños.
«Las antenas, son uno de los factores limitantes cuando se trata de hacer los sistemas cada vez más pequeños, ya que por debajo de un cierto tamaño, las pérdidas llegan a ser demasiado grandes«, dijo el profesor Gehan Amaratunga del Departamento de Ingeniería de Cambridge, quien dirigió la investigación. «El tamaño de una antena está determinada por la longitud de onda asociada con la frecuencia de transmisión de la solicitud, y en la mayoría de los casos se trata de una cuestión de encontrar un compromiso entre el tamaño de la antena y las características requeridas para esa aplicación.»
Otro desafío con las antenas es que ciertas variables físicas asociadas con la radiación de la energía no se comprenden bien. Por ejemplo, todavía no existe un modelo matemático bien definido relacionado con el funcionamiento de una antena práctica. La mayor parte de lo que sabemos sobre la radiación electromagnética proviene de las teorías propuestas por primera James Clerk Maxwell en el siglo 19, las cuales afirman que la radiación electromagnética es generada por la aceleración de los electrones.
Sin embargo, esta teoría se vuelve problemática cuando se trata de emisión de ondas de radio en un dieléctrico sólido, un material que normalmente actúa como aislante, lo que significa que los electrones no son libres de moverse. A pesar de esto, los resonadores dieléctricos ya se utilizan como antenas de los teléfonos móviles, por ejemplo.
«En antenas dieléctricas, el medio tiene una alta permisividad, lo que significa que la velocidad de la onda de radio disminuye a medida que entra en el medio«, dijo el Dr. Dhiraj Sinha, autor principal del artículo. «Lo que no se sabe es cómo son los resultados del medio dieléctrico en la emisión de ondas electromagnéticas. Este misterio ha desconcertado a los científicos e ingenieros desde hace más de 60 años.»
Trabajando con investigadores del Laboratorio Nacional de Física y la compañía de antenas dieléctricas Antenova Ltd, con sede en Cambridge, el equipo de Cambridge utilizó películas delgadas de materiales piezoeléctricos, un tipo de aislante que se deforma o vibra cuando se aplica voltaje. Encontraron que a una cierta frecuencia, estos materiales se vuelven no solo resonadores eficientes, sino también radiadores eficientes, lo que significa que se pueden utilizar como antenas.
Los investigadores determinaron que la razón de este fenómeno es debido a la ruptura de simetría del campo eléctrico asociado con la aceleración de electrones. En física, la simetría es una indicación de una característica constante de un aspecto particular en un sistema dado. Cuando las cargas electrónicas no están en movimiento, hay simetría del campo eléctrico.
La ruptura de la simetría también se puede aplicar en casos tales como un par de alambres paralelos en el que los electrones se puede acelerar mediante la aplicación de un campo eléctrico oscilante. «En las antenas, la simetría del campo eléctrico se rompe ‘explícitamente’, lo que conduce a un patrón de líneas de campo eléctrico que irradian desde un transmisor, como un sistema de dos hilos en el que la geometría paralela está rota«, dijo Sinha.
Los investigadores encontraron que, al someter las delgadas películas piezoeléctricas a una excitación asimétrica, la simetría del sistema se divide de manera similar, lo que resulta en una ruptura de simetría correspondiente del campo eléctrico, y la generación de radiación electromagnética.
La radiación electromagnética emitida a partir de materiales dieléctricos es debido a la aceleración de los electrones en los electrodos metálicos unidos a ellos, como Maxwell predijo, junto con la ruptura explícita de simetría del campo eléctrico.
«Si desea utilizar estos materiales para transmitir energía, tiene que romper la simetría, así como tener electrones acelerados – esta es la pieza que falta en el rompecabezas de la teoría electromagnética«, dijo Amaratunga. «No estoy sugiriendo que hemos llegado a alguna gran teoría unificada, pero estos resultados a ayudar a la comprensión de cómo el electromagnetismo y la mecánica cuántica se cruzan y se unen. Esto abre toda una serie de posibilidades para explorar.»
Las futuras aplicaciones de este descubrimiento son importantes, no solo para la tecnología móvil que usamos todos los días, sino también ayudará en el desarrollo y aplicación de la internet de las cosas: la computación ubicua, donde casi todo en nuestros hogares y oficinas, desde tostadoras a termostatos, estarán conectados a internet. Para estas aplicaciones, se requieren miles de millones de dispositivos, y la capacidad de adaptarse a un ultra-pequeña antena en un chip electrónico, sería un enorme salto hacia adelante.
Los materiales piezoeléctricos se pueden hacer con formas de película fina utilizando materiales como el niobato de litio, nitruro de galio y arseniuro de galio. Amplificadores y filtros basados en arseniuro de galio ya están disponibles en el mercado y este nuevo descubrimiento abre nuevas formas de integración de antenas en un chip junto con otros componentes.
«En realidad es una cosa muy simple«, dijo Sinha. «Hemos logrado un avance real aplicación, después de haber adquirido una comprensión de cómo funcionan estos dispositivos.»
La investigación ha sido financiada en parte por el Centro de Investigación de Nokia, el Cambridge Commonwealth Trust y la Fundación Wingate. El apoyo adicional fue proporcionada a través de la Agencia de Desarrollo del Este de Inglaterra, Cambridge Emprendedores Universitarios, y la inversión de Cambridge Angels.
Fuente: EurekAlerts¡
La mayoría de los componentes son muy baratos, pero lo más difícil es lo más personalizado, la carcasa impresa en 3D, de la que podemos bajarnos los diseños para imprimirlos en una tienda.
Algunos puntos difíciles, como por ejemplo la necesidad de usar un adaptador USB para la conexión Wifi. Ah, y todo el aspecto de soldar puede ser complicado para la mayoría de los mortales.
Además, el sistema operativo usado no le sonará a nadie: TYOS, una capa gráfica de Raspbian, basada en Linux, que al menos permite controlar el dispositivo con la pantalla táctil.
Fuente: Omicrono
A medida que nos acercamos a los límites de miniaturización de la electrónica convencional, las alternativas a los transistores basados en silicio – los bloques de construcción de la multitud de dispositivos electrónicos actuales – están siendo buscadas acaloradamente.
Inspirados por la forma en los organismos vivos han evolucionado en la naturaleza para realizar tareas complejas con notable facilidad, un grupo de investigadores de la Universidad de Durham en el Reino Unido y la Universidad de São Paulo-USP en Brasil está explorando métodos similares, «evolutivos», para crear dispositivos de procesamiento de información .
En el Journal of Applied Physics, de AIP Publishing, el grupo describe el uso de compuestos de nanotubos de carbono de pared simple (SWCNT) como un material para la informática «no convencional». Mediante el estudio de las propiedades mecánicas y eléctricas de los materiales, descubrieron una correlación entre la concentración de SWCNT/viscosidad/conductividad y la capacidad computacional del compuesto.
«En lugar de crear circuitos de matrices de componentes discretos (transistores en electrónica digital), nuestro trabajo se basa en un material desordenado al azar y luego entrena al material para producir un resultado deseado», dijo Mark K. Massey, investigador asociado de la Facultad de Ingeniería y Ciencias de la Computación en la Universidad de Durham.
Este campo de investigación emergente que se conoce como «evolution-in-materio«, término acuñado por Julian Miller de la Universidad de York en el Reino Unido ¿Qué es exactamente? Un campo interdisciplinario combina la ciencia de materiales, la ingeniería y la informática. Aunque todavía está en sus primeras etapas, el concepto ya ha demostrado que mediante el uso de un enfoque similar a la evolución natural, los materiales pueden ser entrenados para imitar los circuitos electrónicos – sin necesidad de diseñar la estructura del material de una manera específica.
«El material que utilizamos en nuestro trabajo es una mezcla de nanotubos de carbono y polímeros, lo que crea una estructura eléctrica compleja«, explicó Massey. «Cuando se aplican voltajes (estímulos) en puntos de la sustancia, sus propiedades eléctricas cambian. Cuando se aplican al material señales correctas, puede ser entrenado o ‘evolucionado’ para realizar una función útil«.
Mientras que el grupo no espera ver a su método competir con los ordenadores de silicio de alta velocidad, podría llegar a ser una tecnología complementaria. «Con más investigación, podría conducir a nuevas técnicas para la fabricación de dispositivos electrónicos», señaló. El método puede encontrar aplicaciones en el ámbito de «procesado de señales analógicas o de baja potencia, dispositivos de bajo costo en el futuro«.
Más allá de seguir la metodología actual de «evolution-in-materio«, la siguiente etapa del grupo será investigar los dispositivos en evolución como parte de la fabricación de material de evolución «hardware-in-the-loop«. «Este enfoque emocionante podría dar lugar a nuevas mejoras en el campo de la electrónica evolucionable», dijo Massey.
La investigación del grupo es parte de Nanoscale Engineering for Novel Computation using Evolution project, que está financiado por la Unión Europea.
Fuente: M.K. Massey, A. Kotsialos, F. Qaiser, D.A. Zeze, C. Pearson, D. Volpati, L. Bowen and M.C. Petty. Computing with Carbon Nanotubes: Optimization of Threshold Logic Gates using Disordered Nanotube/Polymer Composites. Journal of Applied Physics, April 7, 2015 DOI: 10.1063/1.4915343
La «paradoja de la pérdida de la información» de los agujeros negros – un problema de la física por casi 40 años – puede no existir. Eso es lo que algunos físicos han argumentado durante años: que los agujeros negros son las bóvedas finales, entidades que chupan en información y luego se evaporan sin dejar ninguna pista en cuanto a lo que contenían. Un nuevo estudio de la Universidad de Buffalo (EE.UU.) encuentra que – contrariamente a lo que algunos físicos han argumentado a favor de los años – la información no se pierde una vez que ha entrado en un agujero negro. La investigación presenta cálculos explícitos que muestran cómo la información es, de hecho, conservada. «De acuerdo con nuestro trabajo, la información no se pierde una vez que entra en un agujero negro», dice Dejan Stojkovic, PhD, profesor asociado de física en la Universidad de Buffalo. «No sólo desaparecen.»
El nuevo estudio de Stojkovic, «La radiación de un objeto que se derrumba es manifiestamente Unitaria», apareció el 17 de marzo en la revista Physical Review Letters, con el estudiante de doctorado UB Anshul Saini como coautor. El documento describe cómo las interacciones entre las partículas emitidas por un agujero negro pueden revelar información sobre lo que hay dentro, como las características del objeto que formó el agujero negro, para empezar, y las características de la materia y la energía internas.
Este es un descubrimiento importante, afirma Stojkovic, porque incluso los físicos que creían que la información no se perdía en los agujeros negros, han luchado por demostrar, matemáticamente, cómo sucede esto. En su nuevo trabajo se presentan los cálculos explícitos que demuestran cómo se conserva la información.
La investigación marca un paso significativo hacia la solución de la «paradoja de la pérdida de la información», un problema que se planteó hace casi 40 años, desde que Stephen Hawking propuso por primera vez que los agujeros negros pueden emitir energía y se esta evapora con el tiempo. Esto planteaba un gran problema para la física, porque significaba que la información dentro de un agujero negro podría perderse permanentemente cuando el agujero negro desapareciera – una violación de la mecánica cuántica, que establece que la información debe ser conservada.
Información oculta en las interacciones de partículas
En la década de 1970, Hawking propuso que los agujeros negros eran capaces de emitir partículas radiantes, y que la pérdida de energía a través de este proceso impulsaría a los agujeros negros a encogerse y finalmente desaparecer. Hawking llegó a la conclusión de que las partículas emitidas por un agujero negro no proporcionarían pistas sobre lo que había dentro, lo que significa que cualquier información que se encuentre dentro de un agujero negro se pierde por completo una vez que la entidad se evapora.
Aunque Hawking dijo más tarde que se había equivocado y que la información podría escapar de un agujero negro, el tema de si y cómo es posible recuperar información de un agujero negro ha seguido siendo un tema de debate.
Nuevo estudio de Stojkovic y de Saini ayuda a aclarar la historia
En lugar de mirar solo a las partículas que un agujero negro emite, el estudio también tiene en cuenta las sutiles interacciones entre las partículas. De esta manera, la investigación concluye que es posible para un observador fuera de un agujero negro recuperar información acerca de lo que hay dentro.
Las interacciones entre partículas pueden variar desde atracción gravitacional al intercambio de mediadores, como los fotones, entre las partículas. Tales «correlaciones» Desde hace tiempo se sabe que existen, pero muchos científicos las han considerado en el pasado como poco importantes.
«Estas correlaciones fueron a menudo ignoradas en los cálculos relacionados, ya que se pensaba que eran pequeñas e incapaces de mostrar una diferencia significativa», dice Stojkovic. «Nuestros cálculos explícitos muestran que aunque las correlaciones comienzan muy pequeñas, crecen en el tiempo y se vuelven lo suficientemente grandes como para cambiar el resultado.»
Fuente: THE DAILY GALAXY
Hace unos cuantos años, el siliceno, primo cercano del grafeno, sólo existía en los sueños de los teóricos. Actualmente ya se han producido láminas de siliceno en el laboratorio. Incluso se ha utilizado recientemente para el diseño de transistores. Investigadores de la Universidad de Texas (Austin, EE.UU.) y del Instituto de Microelectrónica y Microsistemas de Agrate Brianza (Italia) acaban de presentar el primer transistor construido a partir de láminas de siliceno. Su rendimiento es modesto y su vida no supera unos pocos minutos.
Seguir en: Blastingnews