¿Es realmente necesario el entrelazamiento para describir el mundo físico, o es posible tener alguna teoría post-cuántica sin entrelazamiento?
En un nuevo estudio, físicos han probado matemáticamente que cualquier teoría que tenga un límite clásico -es decir, que pueda describir nuestras observaciones del mundo clásico recuperando la teoría clásica bajo ciertas condiciones- debe contener entrelazamientos. Así que a pesar de que el entrelazamiento va en contra de la intuición clásica, el entrelazamiento debe ser una característica inevitable no sólo de la teoría cuántica, sino también de cualquier teoría no clásica, incluso de las que aún están por desarrollar.
Los físicos, Jonathan G. Richens en el Imperial College London y el University College London, John H. Selby en el Imperial College London y la Universidad de Oxford, y Sabri W. Al-Safi en la Universidad de Nottingham Trent, han publicado un artículo estableciendo el entrelazamiento como una característica necesaria de cualquier teoría no clásica en un número reciente de Physical Review Letters.
«La teoría cuántica tiene muchas características extrañas en comparación con la teoría clásica», dijo Richens a Phys. org. «Tradicionalmente estudiamos cómo el mundo clásico emerge del cuántico, pero nos propusimos revertir este razonamiento para ver cómo el mundo clásico da forma al cuántico. Al hacerlo, demostramos que uno de sus rasgos más extraños, el entrelazamiento, no es nada sorprendente. Esto insinúa que gran parte de la aparente extrañeza de la teoría cuántica es una consecuencia inevitable de ir más allá de la teoría clásica, o tal vez incluso una consecuencia de nuestra incapacidad para dejar atrás la teoría clásica».
Aunque la prueba completa es muy detallada, la idea principal detrás de ella es simplemente que cualquier teoría que describa la realidad debe comportarse como una teoría clásica en algún límite. Este requisito parece bastante obvio, pero como muestran los físicos, imparte fuertes restricciones a la estructura de cualquier teoría no clásica.
La teoría cuántica cumple este requisito de tener un límite clásico a través del proceso de decoherencia. Cuando un sistema cuántico interactúa con el entorno externo, el sistema pierde su coherencia cuántica y todo lo que lo hace cuántico. Así que el sistema se vuelve clásico y se comporta como se espera de la teoría clásica.
Aquí, los físicos muestran que cualquier teoría no clásica que recupere la teoría clásica debe contener estados entrelazados. Para demostrarlo, asumen lo contrario: que tal teoría no tiene entrelazamiento. Entonces demuestran que, sin entrelazarse, cualquier teoría que recupere la teoría clásica debe ser la teoría clásica en sí misma, una contradicción de la hipótesis original de que la teoría en cuestión no es clásica. Este resultado implica que la suposición de que tal teoría no tiene entrelazado es falsa, lo que significa que cualquier teoría de este tipo debe tener entrelazado.
Este resultado puede ser sólo el comienzo de muchos otros descubrimientos relacionados, ya que abre la posibilidad de que otros rasgos físicos de la teoría cuántica puedan reproducirse simplemente exigiendo que la teoría tenga un límite clásico. Los físicos anticipan que características como la causalidad de la información, la simetría de bits y la ubicación macroscópica pueden aparecer como resultado de este único requisito. Los resultados también proporcionan una idea más clara de cómo debe ser cualquier teoría futura no clásica, post-cuántica.
«Mis metas futuras serían ver si la no-localidad de Bell también puede derivarse de la existencia de un límite clásico», dijo Richens. «Sería interesante si todas las teorías que reemplazan a la teoría clásica violaran el realismo local. También estoy trabajando para ver si ciertas extensiones de la teoría cuántica (como la interferencia de orden superior) pueden ser descartadas por la existencia de un límite clásico, o si este límite imparte restricciones útiles a estas’ teorías post-cuántico'».
Ampliar en: Jonathan G. Richens, John H. Selby, and Sabri W. Al-Safi. «Entanglement is Necessary for Emergent Classicality in All Physical Theories.» Physical Review Letters. DOI: 10.1103/PhysRevLett.119.080503
Los gigantes tecnológicos Google, Microsoft y Facebook están aplicando las lecciones de aprendizaje automático (machine learning) a la traducción, pero una pequeña empresa llamada DeepL las ha superado a todas y ha elevado el listón en este campo. Su herramienta de traducción es tan rápida como la competencia, pero más precisa y matizada que cualquiera de las que se conocen.
Mientras que Google Translate a menudo busca una traducción muy literal que no tiene en cuenta algunos matices y expresiones idiomáticas (o que la traducción de estas expresiones idiomáticas es un error), DeepL a menudo proporciona una traducción más natural que se acerca más a la de un traductor capacitado.
Algunas pruebas de mi propia experiencia con alguna literatura francesa que conozco lo suficientemente bien como para juzgar que DeepL gana habitualmente. Menos errores de tensión, intención y concordancia, además de una mejor comprensión y despliegue del lenguaje hacen que la traducción sea mucho más legible. Nosotros pensamos que sí, y también los traductores en las pruebas ciegas de DeepL.
Si bien es cierto que el significado puede transmitirse con éxito a pesar de los errores, como lo demuestra la utilidad que todos hemos encontrado en las traducciones automáticas más pobres, está lejos de garantizar que cualquier traducción valga.
Linguee evolucionado
DeepL nació de Linguee, una herramienta de traducción que existe desde hace años y, aunque popular, nunca llegó a alcanzar el nivel de Google Translate, esta última tiene una enorme ventaja en marca y posición. El cofundador de Linguee, Gereon Frahling, solía trabajar para Google Research, pero en 2007 abandonó la empresa para dedicarse a esta nueva empresa.
El equipo ha estado trabajando con el aprendizaje automático durante años, para tareas adyacentes a la traducción principal, pero fue sólo el año pasado que comenzaron a trabajar en serio en un sistema y una empresa completamente nuevos, que llevarían el nombre de DeepL.
Frahling dijo que había llegado el momento:»Hemos construido una red de traducción neuronal que incorpora la mayoría de los últimos desarrollos, a los que hemos añadido nuestras propias ideas».
Una enorme base de datos de más de mil millones de traducciones y consultas, además de un método de traducción mediante la búsqueda de fragmentos similares en la web, sirvió para una base sólida en el entrenamiento del nuevo modelo. También armaron lo que dicen que es el 23º superordenador más poderoso del mundo, convenientemente ubicado en Islandia.
Los desarrollos publicados por universidades, agencias de investigación y competidores de Lingueee demostraron que las redes neuronales convolucionales eran el camino a seguir, en lugar de las redes neuronales recurrentes que la empresa había estado utilizando anteriormente. Este no es realmente el lugar para entrar en las diferencias entre las CNNs y las RNNs, por lo que debe ser suficiente decir que para una traducción precisa de largas y complejas cadenas de palabras relacionadas, la primera es una mejor opción siempre y cuando se pueda controlar sus debilidades.
Por ejemplo, de una CNN podría se puede decir que aborda una palabra de la oración a la vez. Esto se convierte en un problema cuando, por ejemplo, como sucede comúnmente, una palabra al final de la oración determina cómo debe formarse una palabra al principio de la oración. Es un desperdicio repasar toda la oración sólo para encontrar que la primera palabra que la red escogida está equivocada, y luego empezar de nuevo con ese conocimiento, así que DeepL y otros en el campo de aprendizaje automático aplican «mecanismos de atención» que monitorean esos posibles tropiezos y los resuelven antes de que la CNN pase a la siguiente palabra o frase.
Hay otras técnicas secretas en juego, por supuesto, y su resultado es una herramienta de traducción que personalmente usaré por fefecto. Espero con impaciencia ver a los demás mejorar su juego.
El aprendizaje automático ha resultado ser una herramienta muy útil para la traducción, pero tiene algunos puntos débiles. La tendencia de los modelos de traducción a hacer su trabajo palabra por palabra es una de ellas, y puede llevar a errores graves. Google detalla la naturaleza de este problema, y su solución, en un interesante post en su blog de Investigación.
El problema se explica bien por Jakob Uszkoreit, del departamento de procesamiento del lenguaje natural de la empresa. Considere las dos oraciones siguientes:
Llegué al banco después de cruzar la calle.
Llegué al banco después de cruzar el río.
Obviamente,»banco» significa algo diferente en cada oración, pero un algoritmo que mastica su camino podría fácilmente escoger el equivocado, ya que no sabe qué «banco» es el correcto hasta que llega al final de la oración. Esta clase de ambigüedad está en todas partes una vez que empiezas a buscarla.
Yo, yo sólo reescribiría la oración (Strunk and White advirtió sobre esto), pero por supuesto que no es una opción para un sistema de traducción. Y sería muy ineficaz modificar las redes neuronales para traducir básicamente toda la oración y ver si está pasando algo raro, y luego intentarlo de nuevo si lo hay.
La solución de Google es lo que se llama un mecanismo de atención, integrado en un sistema que llama Transformer. Compara cada palabra con cada palabra de la oración para ver si alguna de ellas afectará la una a la otra de alguna manera clave – para ver si «él» o «ella» está hablando, por ejemplo, o si una palabra como «banco» significa algo en particular.
Cuando la oración traducida está siendo construida, el mecanismo de atención compara cada palabra como se agrega a cada otra. Este gif ilustra todo el proceso. Bueno, más o menos.
Una empresa de traducción competidora de Google, DeepL, también utiliza un mecanismo de atención. Su co-fundador citó este problema como uno en el que también habían trabajado duro, e incluso mencionó queestá basado en el artículo de Google (atención es todo lo que necesitas), aunque obviamente hicieron su propia versión. Y una muy efectiva, quizás incluso mejor que la de Google.
Un efecto secundario interesante del enfoque de Google es que da una ventana a la lógica del sistema: porque Transformer le da a cada palabra una puntuación en relación con cada otra palabra, se puede ver qué palabras «piensa» que están relacionadas, o potencialmente relacionadas:
Este es otro tipo de ambigüedad, donde «él» podría referirse a la calle o al animal, y sólo la última palabra lo delata. Lo resolveríamos automáticamente, pero las máquinas deben ser enseñadas.