Con todas las medidas, el grafeno no debería existir. El hecho es que se reduce a un claro vacío en la física que ve una lámina 2D imposible, de átomos actuar como un material 3D sólido.
Nuevas investigaciones han profundizado en el ondulamiento del grafeno, descubriendo un fenómeno físico a escala atómica que podría ser explotado como una forma de producir un suministro virtualmente ilimitado de energía limpia.
El equipo de físicos liderado por investigadores de la Universidad de Arkansas (EE.UU.) no se propuso descubrir una nueva forma radical de alimentar dispositivos electrónicos. Su objetivo era mucho más humilde: simplemente observar cómo se mueve el grafeno.
Todos estamos familiarizados con el material negro arenoso a base de carbón llamado grafito, que comúnmente se combina con un material cerámico para hacer la llamada’ mina’ en lápices. Lo que vemos como manchas dejadas por el lápiz son en realidad hojas apiladas de átomos de carbono dispuestas en un patrón de «alambre de gallina». Como estas hojas no están unidas entre sí, se deslizan fácilmente unas sobre otras.
Durante años, los científicos se preguntaron si era posible aislar láminas individuales de grafito, dejando que un plano bidimensional de’ malla metálica’ de carbono permaneciera por sí solo.
En 2004, un par de físicos de la Universidad de Manchester lograron lo imposible, aislando las hojas de un trozo de grafito que era sólo un átomo de grosor. Para existir, el material 2D tenía que ser tramposo de alguna manera, actuando como un material 3D para proporcionar algún nivel de robustez.
Resulta que la «laguna» era el movimiento aleatorio de átomos que saltaban de un lado a otro, dando a la hoja 2D de grafeno una práctica tercera dimensión. En otras palabras, el grafeno era posible porque no era perfectamente plano en absoluto, sino que vibraba a nivel atómico de tal manera que sus enlaces no se desentrañaban espontáneamente.
Para medir con precisión el nivel de esta confusión, el físico Paul Thibado lideró recientemente un equipo de estudiantes graduados en un simple estudio. Pusieron láminas de grafeno a través de una rejilla de cobre de apoyo y observaron los cambios en las posiciones de los átomos usando un microscopio de barrido de túnel.
Mientras que podían registrar el balanceo de los átomos en el grafeno, los números no encajaban realmente en ningún modelo esperado. No pudieron reproducir los datos que estaban recopilando de un ensayo a otro. «Los estudiantes sentían que no íbamos a aprender nada útil», dice Thibado,»pero me preguntaba si estábamos haciendo una pregunta demasiado simple».
Thibado impulsó el experimento en una dirección diferente, buscando un patrón cambiando la forma en que miraban los datos. «Separamos cada imagen en subimágenes», dice Thibado. «Mirando los promedios a gran escala se ocultaron los diferentes patrones. Cada región de una sola imagen, cuando se veía en el tiempo, producía un patrón más significativo.»
El equipo rápidamente descubrió que las hojas de grafeno se doblaban de una manera no muy diferente a como se doblaban hacia adelante y hacia atrás de una pieza doblada de metal delgado mientras se retorcía por los lados.
Los patrones de pequeñas fluctuaciones aleatorias que se combinan para formar cambios repentinos y dramáticos se conocen como vuelos de Lévy. Si bien han sido observados en sistemas complejos de biología y clima, esta fue la primera vez que fueron vistos a escala atómica.
Al medir la velocidad y escala de estas ondas de grafeno, Thibado pensó que podría ser posible utilizarlas como fuente de energía a temperatura ambiente. Mientras la temperatura del grafeno permitiera que los átomos se movieran incómodamente, continuaría ondulando y doblándose.
Coloque los electrodos a cada lado de las secciones de este grafeno pandeo, y usted tendría un pequeño cambio de voltaje.
Según los cálculos de Thibado, un solo trozo de grafeno de diez micrones por diez micrones podría producir diez microwatios de potencia. Puede que no suene impresionante, pero dado que podría caber más de 20000 de estos cuadrados en la cabeza de un alfiler, una pequeña cantidad de grafeno a temperatura ambiente podría, posiblemente, alimentar algo pequeño como un reloj de pulsera indefinidamente. Mejor aún, podría alimentar bioimplantes que no necesiten baterías incómodas.
Por muy emocionantes que sean, estas aplicaciones todavía necesitan ser investigadas. Afortunadamente Thibado ya está trabajando con científicos del Laboratorio Naval de Investigación de los Estados Unidos para ver si el concepto tiene potencial.
Para una molécula imposible, el grafeno se ha convertido en algo así como un material maravilloso que ha girado la física en su cabeza.
Ya está siendo promocionado como un bloque de construcción para futuros conductores. Tal vez también veamos que también va a impulsar el futuro de un nuevo campo de dispositivos electrónicos.
Esta investigación fue publicada en Physical Review Letters.