Una característica fundamental de la física cuántica es el hecho de que dos o más partículas presentan correlaciones más fuertes que las clásicamente permitidas. Esta característica única se aplica particularmente al entrelazamiento cuántico: tan pronto como el estado cuántico de una partícula se mide el estado de su pareja entrelazada se establece independientemente de la distancia entre los dos partículas entrelazadas. Esta característica permite la preparación remota del estado cuántico, que es un ingrediente esencial para las aplicaciones en la comunicación cuántica, criptografía cuántica y computación cuántica.
El grado de entrelazamiento se utiliza a menudo como una figura de mérito para determinar su utilidad para las tecnologías cuánticas. Los sistemas fuertemente entrelazados, sin embargo, son muy sensibles a la influencia extrínseca y difíciles de preparar y controlar. Un equipo de investigadores dirigido por los físicos Caslav Brukner (teoría) y Philip Walter (experimento) en la Universidad de Viena han sido capaces de demostrar que con el fin de lograr con éxito el entrelazamiento a distancia la preparación del estado no es la única manera de avanzar. Bajo ciertas circunstancias, estados no entrelazados pueden superar a sus contrapartes entrelazados para tareas, siempre que tengan una cantidad significativa de la denominada»discordia cuántica». Esto es nuevo y todavía no se entiende completamente como la medida de las correlaciones cuánticas cuantifica la alteración de las partículas correlacionadas cuando se están midiendo.
En sus experimentos, los investigadores utilizaron una variedad de estados de dos fotones con correlaciones de polarización diferentes. «Al medir el estado de polarización de un fotón determinado preparamos el estado del fotón socio correspondiente de forma remota», explica Walther. «En el experimento se observa como la calidad de nuestro estado cuántico remotamente preparado se ve afectada por los cambios en la discordancia cuántica».
Este trabajo proporciona un paso importante y significativo hacia futuros esquemas de procesamiento de información cuántica que se basan en recursos menos exigentes.
La investigación se llevó a cabo como una colaboración entre la Facultad de Física de la Universidad de Viena y el Centro de Viena para Ciencia y Tecnología Cuántica (VCQ), el Instituto de Óptica Cuántica e Información Cuántica (IQOQI) de la Academia Austríaca de Ciencias, el Centro para Tecnologías Cuánticas de la Universidad Nacional de Singapur y la Universidad de Oxford.
Fuente: University of Vienna
Un grupo de investigadores de la Universidad Ludwig-Maximilians de Munich y el Instituto Max Planck para óptica cuántica de Garching ha conseguido el entrelazamiento cuántico de dos átomos a 20 metros de distancia y ha logrado que esos átomos anuncien su enlace. Este fenómeno, por el que dos o más partículas se comunican como si estuviesen conectadas por un hilo invisible, sería como si dos monedas cayesen siempre del mismo lado al ser lanzadas simultáneamente en lugares diferentes.
Además de tener importantes implicaciones desde el punto de vista teórico, el fenómeno puede ser utilizado para el envío de información encriptada. En Suiza, por ejemplo, ya ha sido utilizado para transmitir de manera segura los resultados electorales o para comunicaciones bancarias. En un artículo que se publica hoy en Science, el equipo dirigido por Julian Hofmann cuenta como lograron reproducir este entrelazamiento con algunas mejoras que facilitarán sus aplicaciones prácticas.
Una de las características interesantes del entrelazamiento observado por los investigadores alemanes es que fue “anunciado” por los propios átomos. Esta señal “es esencial para poder construir aplicaciones como un repetidor cuántico, porque en otros tipos de entrelazamiento, para saber si se han producido, es necesario comprobarlos en cada ocasión individual y eso los destruye”, explica Wenjamin Rosenfeld, investigador de la Universidad Ludwig-Maximilians.
Ampliar en: es.Materia
La velocidad de la luz es el límite de velocidad cósmica, de acuerdo con los experimentos físicos. No hay información que se pueda llevar a una tasa mayor, no importa qué método se utilice. Sin embargo, un límite de velocidad similar parece existir dentro de los materiales, donde las interacciones entre partículas son por lo general de muy corto alcance y el movimiento es mucho menor que la velocidad de la luz. Un nuevo conjunto de experimentos y simulaciones por Marc Cheneau y sus colegas han identificado esta velocidad máxima, que tiene implicaciones para el entrelazamiento cuántico y los cálculos cuánticos.
En los sistemas no relativistas, donde las velocidades de las partículas es mucho menor que la velocidad de la luz, las interacciones todavía ocurren muy rápidamente, y a menudo implican gran cantidad de partículas. Como resultado, la medición de la velocidad de las interacciones dentro de los materiales ha sido difícil. El límite de velocidad teórica es fijado por el límite de Lieb-Robinson, que describe cómo un cambio en una parte de un sistema se propaga a través del resto del material. En este nuevo estudio, el límite Lieb-Robinson se cuantificó experimentalmente por primera vez, con un verdadero gas cuántico.
Dentro de una red (como un sólido cristalino), una partícula interactúa principalmente con sus vecinas más cercanas. Por ejemplo, el espín de un electrón en un material magnéticamente sensible depende principalmente de la orientación de los espines de sus vecinos a cada lado. Voltear el espín de un electrón afectará a los electrones más cercanos a él.
Pero el efecto también se propaga a través del resto del material – otros espines se pueden voltear, o experimentar un cambio en la energía provocado por el comportamiento del electrón original. Estas interacciones de largo alcance pueden ser impulsadas por efectos externos, como vibraciones de la red. Pero es posible que en los sistemas fríos, las vibraciones de la red mueren cerca del cero absoluto.
En el experimento descrito en la revista Nature, los investigadores comienzan con un simple gas cuántico unidimensional compuesto de átomos en una red óptica. Este tipo de trampa está hecha por el cruce de rayos láser para que interfieran y creen un patrón de onda, mediante el ajuste de la potencia de los láseres, la trampa se puede hacer más o menos profunda. Las redes ópticas son mucho más simples que las redes cristalinas, los átomos no están involucrados en los enlaces químicos.
Por el rápido aumento de la profundidad de la red óptica, los investigadores crearon lo que se conoce como el sistema se apaga. Usted puede pensar en esto como algo análogo a sumergir un trozo de metal forjado en caliente en el agua para que se enfríe rápidamente. Antes del cambio, los átomos están en equilibrio, después del cambio, están muy excitados.
Como en muchos otros sistemas de interacción fuerte, estas excitaciones toman la forma de cuasi-partículas que pueden viajar a través de la red. Las cuasipartículas vecinas comienzan con sus estados cuánticos entrelazados, pero rápidamente se propagan en direcciones opuestas por la red. Al igual que en todos los sistemas entrelazados, los estados de las cuasi-partículas permanecen correlacionadas incluso cuando la distancia entre ellas crece. Al medir la distancia entre las excitaciones como una función del tiempo, la velocidad real de propagación de la cuasi-partículas «se pueden medir. El valor de la medida, es más del doble de la velocidad del sonido en el sistema.
Los puntos específicos de a red utilizados en el experimento hacen que sea difícil hacer comparaciones directas con la teoría, por lo que los investigadores sólo pueden utilizar una serie de principios del primer modelo numérico (en comparación con un cálculo teórico detallado). Por decirlo de otra manera, la velocidad que se mide en la actualidad no se puede derivar directamente de la física cuántica fundamental.
Es difícil generalizar estos resultados. Los sistemas con otras propiedades físicas tendrán distintas velocidades máximas, al igual que la luz se mueve a diferentes velocidades según el medio, los investigadores encontraron que las cosas cambiaron, incluso dentro de una simple Los puntos fuertes específicos de red utilizados en el experimento de hacer que sea difícil hacer comparaciones directas con la teoría, por lo que los investigadores sólo pueden utilizar una serie de principios del primer modelo numérico (en comparación con un cálculo teórico detallado). Por decirlo de otra manera, la velocidad se mide en la actualidad no se puede derivar directamente de la física cuántica fundamental.
Es difícil generalizar estos resultados también. Los sistemas con otras propiedades físicas tendrá distintas velocidades máximas, al igual que la luz se mueve a diferentes velocidades según el medio, los investigadores encontraron que las cosas cambiaron, incluso dentro de un simple Los puntos fuertes específicos de red utilizados en el experimento de hacer que sea difícil hacer comparaciones directas con la teoría, por lo que los investigadores sólo pueden utilizar una serie de principios del primer modelo numérico (en comparación con un cálculo teórico detallado). Por decirlo de otra manera, la velocidad se mide en la actualidad no se puede derivar directamente de la física cuántica fundamental.
Es difícil generalizar estos resultados también. Los sistemas con otras propiedades físicas tendrá distintas velocidades máximas, al igual que la luz se mueve a diferentes velocidades según el medio, los investigadores encontraron que las cosas cambiaron, incluso dentro de un simple red unidimensional cada vez que varía la fuerza de interacción entre los átomos.
Sin embargo, muestra que las excitaciones deben tener una velocidad máxima constante, que es un resultado innovador. Al igual que con la relatividad, este límite de velocidad crea una especie de «cono de luz» que separa las regiones donde las interacciones pueden ocurrir y donde están prohibidas. Esto tiene profundas implicaciones para el estudio del entrelazamiento cuántico, y por lo tanto la mayoría de las formas de la computación cuántica.
Fuente: “Light-cone-like spreading of correlations in a quantum many-body system.” By Marc Cheneau, Peter Barmettler, Dario Poletti, Manuel Endres, Peter Schauß, Takeshi Fukuhara, Christian Gross, Immanuel Bloch, Corinna Kollath and Stefan Kuhr. Nature, Vol. 481, Pgs. 484–487. Published online Jan. 25, 2012. DOI: 10.1038/nature10748.
Imágen: HERALDO
Un par de cristales de diamante ha sido relacionados mediante el entrelazamiento cuántico. Esto significa que una vibración en los cristales no podría ser significativamente asignada a uno u otro de ambos, los cristales eran al mismo tiempo vibrantes y no vibrantes. El entrelazamiento cuántico – la interdependencia de los estados cuánticos entre partículas que no están en contacto físico – ha sido bien establecida entre las partículas cuánticas como los átomos ultrafríos. Pero como la mayoría de los efectos cuánticos, que no tienden a sobrevivir ya sea a temperatura ambiente o en objetos lo suficientemente grandes como para percibirlos a simple vista. Los diamantes han sido vinculados con el entrelazamiento cuántico – «acción fantasmal a distancia».
Un equipo dirigido por Ian Walmsley, físico de la Universidad de Oxford (Reino Unido), encontró una manera de superar las limitaciones, lo que demuestra que las consecuencias extrañas de la teoría cuántica se aplican a gran escala, así como en las más pequeñas. El trabajo se ha publicado en Science . El resultado es «inteligente y convincente», dice Andrew Cleland, un especialista en el comportamiento cuántico de los objetos a escala nanométrica en la Universidad de California en Santa Bárbara (EE.UU.).
Entrelazamiento
El entrelazamiento se produce cuando dos partículas cuánticas interactúan entre sí para que sus estados cuánticos se vuelven interdependientes. Si está la primera partícula en el estado A, por ejemplo, entonces el otro debe estar en el estado B, y viceversa.
Hasta que lse efectúa a medición de una de las partículas, su estado es indeterminado: puede ser considerado como en los dos estados A y B al mismo tiempo, esto se conoce como una superposición. El acto de medir ‘colapsa’ esta superposición en uno sólo de los estados posibles.
Sin embargo, si las partículas se entrelazan, entonces esta medida también determina el estado de la otra partícula – incluso si han sido separadas por una distancia inmensa. El efecto de la medida se transmite instantáneamente a la otra partícula, a través de lo que Albert Einstein con escepticismo llamó «acción fantasmal a distancia».
Extraño, ya que el entrelazamiento cuántico es real – y podría ser útil. En una técnica llamada criptografía cuántica, los fotones entrelazados de luz se han utilizado para transmitir información de tal manera que cualquier intercepción es detectable. Los estados cuánticos entrelazados de los átomos o fotones pueden ser utilizados en la computación cuántica. Los estados superpuestos codifican mucha más información que la que es posible con el sistema convencional de bit de dos estados .
Sin embargo, superposiciones y entrelazado son usualmente vistos como estados delicados, fácilmente perturbados por movimientos al azar de los átomos en un ambiente cálido. Esta codificación también tiende a ocurrir muy rápidamente, si los estados cuánticos contienen muchas partículas que interactúan – en otras palabras, para objetos grandes.
Fotones y fonones
Walmsley y colaboradores han estudiado las vibraciones atómicas sincronizadas llamadas fonones en el diamante. Los fonones son movimientos ondulatorios de átomos en una red, algo así como las ondas de sonido en el aire, y se producen en todos los sólidos. Pero en el diamante, la rigidez de la red significa que los fonones tienen frecuencias y energía muy altas, y por lo tanto habitualmente no activos, incluso a temperatura ambiente.
Los investigadores utilizaron un pulso láser para estimular las vibraciones de fonones en dos cristales de tres milímetros de ancho y a 15 centímetros de distancia. Cada fonón implica la vibración coherente de unos 10^16 átomos, que corresponde a una región del cristal de 0.05 milímetros de ancho y 0.25 milímetros de largo – lo suficientemente grande como para verla a simple vista.
Hay tres condiciones esenciales que se deben cumplir para obtener los fonones entrelazados en los dos cristales de diamante. En primer lugar, un fonón debe ser excitado con un solo fotón de la corriente de fotones del láser. En segundo lugar, este fotón debe ser enviado a través de un «divisor de haz» que lo dirige a un cristal o al otro. Si la ruta no es detectada, entonces el fotón puede ser considerado en ambos sentidos a la vez: está en una superposición de trayectorias. El fonón resultante se entrelaza demasiado en una superposición. La tercera condición es que el fotón debe convertir parte de su energía en un fotón de menor energía, denominada fotón Stokes, que indica la presencia de los fonones.
«Cuando se detecta el fotón Stokes sabemos que hemos creado un fonón, pero no podemos saber ni siquiera en principio en que diamante se encuentra», dice Walmsley. «Este es el estado entrelazado, para el que la declaración: este diamante está vibrando, este diamante no está vibrando es verdadera».
Para verificar que el estado se ha logrado, los investigadores lanzan un segundo pulso láser a los dos cristales para ‘extraer’ los fonones, de los que el fotón láser extrae energía adicional. Todas las condiciones necesarias se cumplen muy pocas veces durante el experimento. «Tienen que realizar un número astronómico de intentos de obtener un número muy limitado de resultados deseados», dice Cleland.
Duda de que habrá alguna aplicación inmediata de la técnica, en parte porque la relación es muy corta. «No estoy seguro de que esto va a salir de aquí», dijo Cleland. «No puedo pensar en un uso particular de entrelazamientos que duran sólo unos pocos picosegundos» (10^-12 segundos).
Pero Walmsley es más optimista. «El diamante podría ser la base de una poderosa tecnología para el procesamiento de información cuántica práctica», dice. «Las propiedades ópticas del diamante hacen que sea ideal para la producción de pequeños circuitos ópticos en los chips.»
Fuente: Lee, K. C. et al. Science 334, 1253–1256 (2011)