admin

Categorías

Coobis

Charles Babbage

La máquina diferencial de Babagge construida en la actualidad

Actualidad Informática. Máquina diferencial de Charles Babbage. Rafael BarzanallanaUna máquina que no logró construirse en 1822, ideada por Charles Babbage,  considerado  padre de la informática moderna. El invento fue la máquina diferencial, diseñado para tabular funciones polinómicas, necesarias para el desarrollo de las tablas trigonométricas esenciales para navegar. No se pudo construir, entre otras cosas, porque pesaría 15 toneladas y tendría más de 25 000 piezas mecánicas. Babbage comenzó la construcción de su máquina, pero ésta nunca fue terminada. Dos cosas fueron mal,  la fricción y engranajes internos disponibles no eran lo bastante buenos para que los modelos fueran terminados, siendo también las vibraciones un problema constante ,la otra fue que Babbage cambiaba incesantemente el diseño de la máquina.

En el centenario de su muerte, sin embargo, el London Science Museum la construyó siguiendo los planos de Babbage. La máquina consiguió dar resultados exactos con 33 dígitos en cuestión de segundos. Resulta sin duda emocionante comprobar que el diseño de alguien podría haber revolucionado el mundo de haberse podido plasmar en su época. Resulta emocionante comprobar cómo una persona puede adelantarse tanto a su época. Y, sobre todo, resulta emocionante transportar del pasado una tecnología que pudo haber existido pero no lo hizo, algo así como plasmar un universo alternativo, a lo Wild Wild West.

Ampliar en: Xataka

Ada Lovelace y los luditas

Ada Lovelace
Los luditas originales eran parte de un movimiento obrero en Inglaterra en el siglo 19. Estos luditas estaban en contra de las máquinas mecánicas incluyendo telares que cambiaron la producción textil de las manos de expertas de los tejedores a una fuerza de trabajo poco cualificado que atiende a las máquinas. En el clima económico actual, no es demasiado difícil ver por lo que los luditas estaban preocupados: incluso si las tecnologías de la Revolución Industrial no se tradujeran en una disminución global de puestos de trabajo (ya que había necesidad de trabajadores para atender las máquinas), no habría ni hay razón para suponer que los propietarios de fábricas textiles estarían interesados en la reconversión de las expertos tejedores que ya existen por la ofertas de las máquinas Y la estabilidad neta (incluso aumento) del número de puestos de trabajo puede ser un consuelo cuando su trabajo se pierde.

Por lo tanto, los luditas rompieron los telares, cometieron otros actos de sabotaje industrial, fueron acosados por las tropas del gobierno, se vio a algunos de ellos ejecutados por romper las máquinas (y otros exiliados a Australia) después de la aprobación de la ley, se asesinó al dueño de un molino , y luego casi se desvaneció como un movimiento.

Antes de la aprobación de la ley Frame Breaking Act, un miembro de la Cámara de los Lores argumentó vehementemente en contra de imponer la pena capital en el marco de infracciones, dando a los lores un discurso teatral, cargado de referencias sarcásticas a los» beneficios» de la automatización, que él vio como una forma de producir material de calidad inferior, así como dejar a la gente sin trabajo. «Ese miembro del Parlamento fue George Gordon, Lord Byron , quien, como es el caso, era también el padre de Ada Lovelace .

Ada Lovelace es a menudo considerada como la primera programadora de computadoras del mundo. El equipo en cuestión fue  la máquina analítica de Charles Babbage – una máquina que Babbage propuso, pero nunca fue realmente construida. Por lo tanto la realización de Lovelace requiere un poco de explicación :

Durante un período de nueve meses en 1842-43, Lovelace tradujo las memorias del matemático italiano Luigi Menabrea es [en francés] a las nuevas propuestas de la máquina de Babbage, la Máquina Analítica . Con el artículo, se adjunta una serie de notas. Las notas son más largas que el propio libro de memorias e incluyen (Sección G) con todo detalle un método para calcular los números de Bernoulli, reconocido por los historiadores como el programa de la primera computadora del mundo. Los biógrafos se debaten en la medida sobre que sus aportaciones fueran originales, pues algunos de que los programas fueron escritos por el propio Babbage.Babbage escribió lo siguiente sobre el tema, en sus pasajes de la vida de un filósofo(1846):

Entonces le sugerí que añadiera las notas de las memorias de Menabrea, una idea que fue aprobada de inmediato. Discutimos juntos las ilustraciones diferentes que podrían ser introducidas: sugerí varias, pero la selección fue totalmente suya. Así también fue el trabajo algebraico de los diferentes problemas, a excepción, de un hecho, relativo a los números de Bernoulli, que me había ofrecido a hacer para salvar a Lady Lovelace del error. Esta me lo envió de nuevo a mí para una enmienda, después de haber detectado un error grave que había hecho en el proceso.

El nivel de impacto de Lovelace en los motores de Babbage es objeto de debate. El debate es difícil de resolver debido a la tendencia de Charles Babbage en no reconocer (ya sea verbalmente o por escrito) la influencia de otras personas en su trabajo. Lovelace fue sin duda una de las pocas personas que entendió completamente las ideas de Babbage y creó un programa para la máquina analítica. No tenía la máquina analítica, en realidad nunca se ha construido, su programa hubiera sido capaz de calcular una secuencia de números de Bernoulli. En base a este trabajo, Lovelace es ampliamente acreditado con ser el primer programador de computadoras.La prosa de Lovelace también reconoció algunas de las posibilidades de la máquina de Babbage, que nunca se publicaron, como la especulación de que «el motor podría componer piezas científicas, y  música de cualquier grado de complejidad o extensión».

Para aquellos que tienden a dar crédito a Babbage, en lugar de a Lovelace, con el programa de ordenador en la sección G, Lovelace sigue siendo indiscutiblemente el primer depurador de programas del mundo.

Si el motor analítico se hubiera construido, el plan consistía en emitir su opinión sobre las tarjetas perforadas de la misma clase que las se utilizan para ejecutar los telares mecánicos. A pesar de que Lovelace nunca conoció a su padre, es curioso tratar de conciliar el padre que defendió a los luditas con la hija, que establece una base importante de nuestra era de la informática. Sin duda, los ordenadores han dado paso a los cambios socioeconómicos que eclipsan los traídos por la mecanización de los molinos.

Sin embargo, lo hizo Lovelace era bastante interesante. Por un lado, los procedimientos que desarrolló para el uso de una máquina de computación (que había sido diseñada, pero no construida) para llevar a cabo cálculos complejos fueron una demostración concreta de lo bonito que era posible. Sus programas de trazado como la máquina de Babbage propuesta podría ser objeto de un uso práctico. En otras palabras, el trabajo de Lovelace demostró que un equipo mecánico, que no era sólo una cosa fría en sí, sino una tecnología que podría hacer «clic» en el trabajo y en el mundo de un cierto tipo de trabajador intelectual. Mientras tanto, hasta que un equipo mecánico de Babbage propuso una realidad material, la gente realmente tenía que hacer sus cálculos a mano.

Y mientras Lovelace y Babbage son la madrina y el padrino intelectual de un salto tecnológico importante, hay una manera en la que el cambio de su trabajo puesto en marcha se siente diferente a la industrialización de la producción textil que los luditas originales denunciaban. Las máquinas de tejer,  pueden dar lugar a que los expertos tejedores humanos quedaran obsoletos. Las computadoras mecánicas, por otro lado, no era tan evidente que hiciera obsoletos a la fuerza de trabajo existente de los equipos humanos. Mientras que la mecanización de complejos cálculos matemáticos elimina un cierto nivel de trabajo de intelectuales  de  humanos, que de otra manera se  hacen con lápiz y papel, las energías intelectuales podrían ser dirigidas a otros problemas, relacionados (incluyendo la formulación de nuevas ideas que conduzcan a nuevos cálculos, o sacar conclusiones de los resultados de los cálculos). Por otra parte, la mecanización de los cálculos  genera la demanda de un nuevo tipo de trabajo intelectual – la elaboración de las instrucciones para la máquina de computación para realizar los cálculos.

Autor: Janet D. Stemwedel es profesor asociado de filosofía en la Universidad Estatal de San José. Su exploración de la ética, la creación del conocimiento científico, y cómo se entrelazan son informados por su juventud perdida científica como físico-químico. Síguenos en Twitter  @ docfreeride .

 

Puerta lógica mecánica: ¿Podrían las palancas reemplazar a los transistores?

De vuelta a la época victoriana, Charles Babbage creó un equipo mecánico que usaba palancas y engranajes para obtener los datos en movimiento. Actualmente, sin embargo, nuestros ordenadores en su mayoría operan utilizando transistores electrónicos. Por desgracia, al juntar una puerta lógica para su uso en la informática, algunos  de los los materiales utilizados no puede resistir el calor. El carburo de silicio se ha utilizado para ayudar a fortalecer el silicio ordinario, que se degrada a 250 a 300 grados Celsius.Sin embargo, estos  transistores son voluminosos, lentos  y requieren altos voltajes.

Con el fin de evitar este problema Te-Hao Lee y un equipo de la Case Western Reserve University volvió a las ideas de Babbage  de la computación mecánica. New Scientist informa sobre el esfuerzo de integrar la informática en nuestros sistemas mecánicos electrónicos modernos:

Su equipo ha desarrollado una versión mecánica de un inversor – el módulo que se utiliza para construir muchos tipos de puertas lógicas, que a su vez son un componente fundamental de los circuitos digitales, enlos ordenadores. El dispositivo utiliza un arreglo de palancas a nanoescala en lugar de . Al igual que un operador del telégrafo Morse, estas palancas físicas habilitan y deshabilitan contactos para dejar pasar o bloquear las corrientes.

La aplicación de un voltaje hace mover las palancas mediante atracción electrostática . El equipo  de Lee consiguió que el inversor a  550 C se encienda y se apague 500000 veces por segundo, realizando un cálculo en cada ciclo.

Dichas temperaturas de funcionamiento son alentadores. Sin embargo, hay problemas. Los componentes mecánicos se empiezan a romper después de dos mil millones de ciclos, lo que limita su utilidad. Además, esta configuración es siempre más lenta que la velocidad de un PC normal. Sin embargo, los principales usos de una puerta lógica mecánica probablemente no serían en la informática de consumo. En su lugar, tal dispositivo tendría más sentido en situaciones de calor muy elevado, como por ejemplo los motores de cohete.

Más información:

Te-Hao Lee, Swarup Bhunia, Mehran Mehregany, «Electromechanical Computing at 500°C with Silicon Carbide» Science (septiembre de 2010). Disponible en línea: 29/5997/1316 http://www.science …
Paul Marks, «Steampunk chip takes the heat», revista New Scientist (10 de septiembre de 2010). Disponible en línea: http://www.newscie … él-heat.html
Hamish Johnston, Logic circuit takes the heat «, PhysicsWorld (14 de septiembre de 2010). Disponible en línea: http://physicsworl … / news/43734.

Fuente:  PHYSORG.COM

_________________

Enlaces de interés:

–  Actualidad informática: Electrónica

–  Breve historia de la electrotécnica

–  Historia de la Informática. La era de la electrónica

–  Ley de Moore

La tecnología fue el gran problema de Babbage y es el gran problema de los ordenadores cuánticos

Imagina que un periodista le pregunta a Charles Babbage en 1822: ¿Para cuándo espera usted que existan ordenadores clásicos escalables? ¿Cuándo uno de estos ordenadores clásicos estára en la casa de todos los ciudadanos? Qué podría haber contestado: En 20 años (1842), en 50 años (en 1872), … Se necesitaron 120 años para lograr ordenadores clásicos escalables (gracias a la electrónica) y 160 años para que llegaran a los hogares (gracias a la microelectrónica). Cuando la gente se pregunta ahora ¿para cuándo se espera que existan ordenadores cuánticos escalables? o ¿cuándo un ordenador cuántico estará en la casa de todos los ciudadanos? la única respuesta posible es que el gran problema de Babbage era la tecnología: ni existía la electrónica, ni el transistor, ni el circuito integrado, … El gran problema de los ordenadores cuánticos en la actualidad es tecnológico: cómo conseguir que un gran número de cubits (sean fotones, núcleos atómicos o cualquier otra cosa que puedan ser) estén infinitamente aislados del entorno de tal forma que la decoherencia actúe en una escala de tiempo cientos de órdenes de magnitud más grande que las que actualmente se logran en los laboratorios más avanzados. Ahora mismo esto parece prácticamente imposible. Nadie puede imaginar una tecnología capaz de lograrlo. Igual que Babbage no podía imaginar una tecnología que posibilitara el transistor y menos aún un circuito integrado con 1000 millones de transistores en unos centímetros cuadrados (como los Itanium de Intel). Nos lo cuenta Scott Aaronson, “What’s taking so long, Mr. Babbage?,” Shtetl-Optimized, May 22nd, 2010.

Como bien nos recuerda Scott, no existe ningún límite fundamental (conocido) que impida que (pongamos dentro de 160 años) existan ordenadores cuánticos con miles de millones de cubits en un estado entrelazado invulnerable a la decoherencia durante unos segundos. Ahora bien, nadie puede ni soñar cual será la tecnología que lo posibilite. Hoy en día, dependiendo de la manera en que se cuenten los cubits, se han fabricado ordenadores cuánticos con muy pocos cubits. El algoritmo de Peter Shor ha sido implementado con 4 cubits (con tecnologías de trampas de iones y con arquitecturas fotónicas). También se ha implemento con tecnología NMR (aunque no es el algoritmo original sino una versión incoherente) con 7 cubits. Se han logrado estados entrelazados GHZ de hasta 12 cubits. Etc., etc. Grandes logros, para unos, parcos para otros.

Fuente:  Francis (th)E mule Science’s News

___________________

Enlaces relacionados:

–  Actualidad informática:  Ordenadores cuánticos

–   Nuevo material que supone avance en la computación cuántica

–   Historia Informática. Babbage

Related Posts with Thumbnails

Calendario

noviembre 2024
L M X J V S D
« Nov    
 123
45678910
11121314151617
18192021222324
252627282930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa