admin

Categorías

Coobis

cubit

La Curveball de 56 cubits de IBM puede afectar a los planes de computación cuántica de Google

IBMJusto cuando parecía subestimada, la computación clásica está volviendo a atacar. IBM ha ideado una manera de simular ordenadores cuánticos que tienen 56 bits cuánticos, o cubits, en un superordenador no cuántico – una tarea que antes se creía imposible. La hazaña mueve los palos de la portería en la lucha por la supremacía cuántica, el esfuerzo por superar a las computadoras clásicas usando las cuánticas.

Antes se aceptaba ampliamente que un ordenador clásico no puede simular más de 49 qubits debido a limitaciones de memoria. La memoria necesaria para las simulaciones aumenta exponencialmente con cada cubit adicional.

Lo más cerca que se había llegado a poner a prueba el límite de 49 bits era una simulación de 45 bits en el Instituto Federal Suizo de Tecnología de Zúrich, que necesitaba 500 terabytes de memoria. La nueva simulación de IBM eleva la suposición al simular 56 qubits con sólo 4,5 terabytes.

La simulación se basa en un truco matemático que permite una representación numérica más compacta de los diferentes arreglos de qubits, conocidos como estados cuánticos.

Una operación de computación cuántica es típicamente representada por una tabla de números que indica lo que se debe hacer a cada cubit para producir un nuevo estado cuántico. En su lugar, los investigadores del Centro de Investigación T. J. Watson de IBM en Yorktown Heights, Nueva York, utilizaron tensores – tablas efectivamente multidimensionales aumentadas con ejes más allá de filas y columnas.

Gracias a los ejes adicionales, se puede introducir mucha más información en unos cuantos tensores, siempre y cuando sepamos escribirla en el lenguaje de los tensores. Los investigadores encontraron una forma de hacer precisamente eso para las operaciones de computación cuántica.

Vergonzosamente paralelos

Al escribir las operaciones en forma tensorial, también descubrieron una manera de dividir la tarea de simulación en lo que ellos llaman trozos «vergonzosamente paralelos», lo que les permitió usar los muchos procesadores de un supercomputador simultáneamente. Esto les ganó el último bit de eficiencia necesario para simular una computadora cuántica de 56 bits.

IBM se ha pasado de la raya «, dice Itay Hen de la Universidad del Sur de California. «Será mucho más difícil para la gente de dispositivos cuánticos exhibir supremacía.»

IBM tiene ahora un ordenador cuántico funcional de 56 bits que vive en su supercomputadora. Pero mientras que eso es una mejora con respecto al récord anterior, Andrew Childs en la Universidad de Maryland dice que no es un gran salto hacia adelante. No creo que estén afirmando que esto vaya a darles una simulación eficiente de sistemas cuánticos en un ordenador clásico «, dice.

Aun así, han subido la apuesta en la carrera por superar a los ordenadores clásicos con sistemas cuánticos. Google dijo anteriormente que estaban en camino de construir un procesador de 49 bits a finales de 2017, pero eso ya no les permitirá alcanzar la supremacía cuántica.

De hecho, Bob Wisnieff, el investigador principal del estudio de IBM, dice que su simulación actual funciona cerca de «mil millones de veces más lento» que las estimaciones teóricas para una computadora cuántica real de 56 cubits.

El equipo de Wisnieff planea experimentar con supercomputadoras cuyos procesadores pueden comunicarse eficazmente entre sí. Esperan poder exprimir unos cuantos más de estos canales de comunicación, lo que ayuda a acelerar el cálculo paralelo necesario para la simulación.

El objetivo de IBM es construir una computadora cuántica que pueda «explorar problemas prácticos» como la química cuántica, dice Wisnieff. Espera comprobar la precisión de las computadoras cuánticas frente a sus simulaciones antes de poner a prueba las computadoras cuánticas reales.

«Quiero ser capaz de escribir algoritmos para los que conozco las respuestas antes de ejecutarlos en una computadora cuántica real «, dice.

Referencia: arxiv.org/abs/1710.05867

Un ordenador cuántico para abordar los problemas de la ciencia fundamental

Un ordenador cuántico para abordar los problemas de la ciencia fundamental

Durante más de 50 años, la Ley de Moore ha reinado en forma suprema. La observación de que el número de transistores en un chip de ordenador se duplica aproximadamente cada dos años ha marcado el ritmo de nuestra revolución digital moderna: hacer posible teléfonos inteligentes, ordenadores personales y superordenadores actuales. Pero la Ley de Moore se está ralentizando. E incluso si no lo fuera, algunos de los grandes problemas que los científicos necesitan abordar podrían estar fuera del alcance de los ordenadores convencionales.

Durante los últimos años, los investigadores del  Lawrence Berkeley National Laboratory (Berkeley Lab) han estado explorando un tipo drásticamente diferente de arquitectura computacional basada en la mecánica cuántica para resolver algunos de los problemas más difíciles de la ciencia. Con el patrocinio de Laboratory Directed Research and Development (LDRD), han desarrollado algoritmos de optimización y química cuántica, así como procesadores de prototipo superconductores cuánticos. Recientemente, demostraron la viabilidad de su trabajo utilizando estos algoritmos en un procesador cuántico que consta de dos bits cuánticos superconductores para resolver con éxito el problema químico de calcular el espectro energético completo de una molécula de hidrógeno.

Ahora, dos equipos de investigación dirigidos por el personal del Berkeley Lab recibirán fondos del Departamento de Energía (DOE) para aprovechar este impulso. Un equipo recibirá 1,5 millones de dólares en tres años para desarrollar algoritmos novedosos, técnicas de compilación y herramientas de programación que permitirán utilizar plataformas de computación cuántica a corto plazo para el descubrimiento científico en las ciencias químicas. El otro equipo trabajará en estrecha colaboración con estos investigadores para diseñar prototipos de procesadores de cuatro y ocho cubit para calcular estos nuevos algoritmos. Este proyecto tendrá una duración de cinco años y los investigadores recibirán 1,5 millones de dólares para su primer año de trabajo. Para el quinto año, el equipo de hardware espera demostrar un procesador de 64 cubit con control total.

«Algún día, los ordenadores cuánticos universales podrán resolver una amplia gama de problemas, desde el diseño molecular hasta el aprendizaje automático y la ciberseguridad, pero estamos muy lejos de eso. Por lo tanto, la pregunta que nos hacemos actualmente es si existen problemas específicos que podamos resolver con computadoras cuánticas más especializadas», dice Irfan Siddiqi, científico de laboratorio de Berkeley y director fundador del Center for Quantum Coherent Science de la UC Berkeley.

Según Siddiqi, las tecnologías de computación cuántica coherente de hoy en día cuentan con los tiempos de coherencia necesarios, las fidelidades lógicas de operación y las topologías de circuitos para realizar cálculos especializados para la investigación fundamental en áreas como la ciencia molecular y de materiales, la optimización numérica y la física de alta energía. A la luz de estos avances, señala que es el momento de que el DOE explore cómo estas tecnologías pueden integrarse en la comunidad de computación de alto rendimiento. En estos nuevos proyectos, los equipos del Berkeley Lab trabajarán con colaboradores de la industria y el mundo académico para aprovechar estos avances y abordar problemas científicos difíciles relacionados con las misiones del DOE, como el cálculo de la dinámica de los sistemas moleculares y el aprendizaje de máquinas cuánticas.

«Estamos en las primeras etapas de la computación cuántica, como en los años 40 con la computación convencional. Tenemos parte del hardware, ahora tenemos que desarrollar un conjunto robusto de software, algoritmos y herramientas para utilizarlo de manera óptima para resolver problemas científicos realmente difíciles», dice Bert de Jong, que dirige el Grupo de Química Computacional, Materiales y Clima del Laboratorio de Investigación Computacional (CRD) de Berkeley.

Dirigirá un equipo de Algoritmos Cuánticos del DOE formado por investigadores de Berkeley Lab, Harvard, Argonne National Lab y UC Berkeley, centrado en «Algoritmos Cuánticos, Matemáticas y Herramientas de Compilación para Ciencias Químicas».

«La tradición de Berkeley Lab en la ciencia en equipo, así como su proximidad a UC Berkeley y Silicon Valley, lo convierten en un lugar ideal para trabajar en computación cuántica de extremo a extremo», dice Jonathan Carter, Subdirector de Berkeley Lab Computing Sciences. «Tenemos físicos y químicos en el laboratorio que están estudiando la ciencia fundamental de la mecánica cuántica, ingenieros para diseñar y fabricar procesadores cuánticos, así como científicos informáticos y matemáticos para asegurar que el hardware sea capaz de calcular efectivamente la ciencia del DOE».

Carter, Siddiqi y Lawrence Livermore National Laboratory’s Jonathan DuBois liderarán el proyecto de Testbed Simulation (AQuES) Advanced Quantum-Enabled Simulation del DOE.

Desafío de la coherencia cuántica

La clave para construir ordenadores cuánticos que resuelvan problemas científicos fuera del alcance de los ordenadores convencionales es la «coherencia cuántica». Este fenómeno permite esencialmente que los sistemas cuánticos almacenen mucha más información por bit que en las computadoras tradicionales.

En una computadora convencional, los circuitos de un procesador incluyen miles de millones de transistores, pequeños interruptores que se activan mediante señales electrónicas. Los dígitos 1 y 0 se utilizan en binario para reflejar los estados de encendido y apagado de un transistor. Esencialmente, así es como se almacena y procesa la información. Cuando los programadores escriben código de ordenador, un traductor lo transforma en instrucciones binarias (1s y 0s) que un procesador puede ejecutar.

A diferencia de un bit tradicional, un bit cuántico (cubit) puede adquirir propiedades mecánicas cuánticas algo contrarias a la intuición como el entrelazamiento y la superposición. El entrelazamiento cuántico ocurre cuando los pares o grupos de partículas interactúan de tal manera que el estado de cada partícula no puede ser descrito individualmente, sino que el estado debe ser descrito para el sistema como un todo. En otras palabras, las partículas entrelazadas actúan como una unidad. La superposición ocurre cuando una partícula existe en una combinación de dos estados cuánticos simultáneamente.

Por lo tanto, mientras que un bit de ordenador convencional codifica la información como 0 o 1, un cubit puede ser 0,1 o una superposición de estados (tanto 0 como 1 al mismo tiempo). La capacidad de un cubit para existir en múltiples estados significa que, por ejemplo, puede permitir el cálculo de las propiedades químicas y de materiales significativamente más rápido que los ordenadores tradicionales. Y si estos cubits se pueden enlazar o enredar en un ordenador cuántico, los problemas que no se pueden resolver hoy en día con los ordenadores convencionales podrían ser abordados.

Pero sigue siendo un reto conseguir cubits en este estado de coherencia cuántica, donde se pueden aprovechar las propiedades de mecánica cuántica y luego sacar el máximo provecho de ellas cuando están en este estado.

«La computación cuántica es como jugar un juego de ajedrez donde las piezas y el tablero están hechos de hielo. A medida que los jugadores se mueven alrededor de las piezas, los componentes se están derritiendo y mientras más movimientos realices, más rápido se derretirá el juego», dice Carter. «Los cubits pierden coherencia en muy poco tiempo, así que depende de nosotros encontrar el juego de movimientos más útil que podamos hacer.»

Carter señala que el enfoque de Berkeley Lab de codiseñar los procesadores cuánticos en estrecha colaboración con los investigadores que desarrollan algoritmos cuánticos, recopilando técnicas y herramientas de programación será extremadamente útil para responder a esta pregunta.

«Los enfoques computacionales son comunes en la mayoría de los proyectos científicos del Berkeley Lab. A medida que la Ley de Moore se está ralentizando, las nuevas arquitecturas, sistemas y técnicas informáticas se han convertido en una iniciativa prioritaria en Berkeley Lab «, dice Horst Simon, Director Adjunto de Berkeley Lab. «Reconocemos desde el principio cómo la simulación cuántica podría proporcionar un enfoque eficaz a algunos de los problemas computacionales más desafiantes en la ciencia, y me complace ver el reconocimiento de nuestra iniciativa de LDRD a través de esta primera financiación directa. La ciencia de la información cuántica se convertirá en un elemento cada vez más importante de nuestra empresa de investigación en muchas disciplinas».

Debido a que este campo todavía se encuentra en sus primeros días, hay muchos enfoques para construir una computadora cuántica. Los equipos liderados por el Laboratorio de Berkeley estarán investigando ordenadores cuánticos superconductores.

Para diseñar y fabricar la próxima generación de procesadores cuánticos, el equipo de AQuES aprovechará la instalación de circuitos superconductores en el Laboratorio de Nanoelectrónica Cuántica y Nanoelectrónica de UC Berkeley, al tiempo que incorporará la experiencia de los investigadores en las divisiones de Tecnología de Aceleradores y Física Aplicada, Ciencia de Materiales e Ingeniería del Laboratorio de Berkeley. Los equipos de investigación también utilizarán las capacidades únicas de dos instalaciones del DOE: la Molecular Foundry y el National Energy Research Scientific Computing Center (NERSC), ambos ubicados en el Berkeley Lab.

Ampliar en: EurekAlert!

Ordenadores cuánticos, los cubits

Fuente:  LIMONCELLO DIGITAL

El modelo clásico del ordenador supuestamente cuántico de D-Wave

Obvio, pero hay que repetirlo. Si el tiempo de decoherencia de un cubit individual es menor que el tiempo de ejecución de un algoritmo que utilice cientos de estos cubits, entonces el algoritmo ejecutado es clásico, aunque use cubits. Umesh Vazirani (UC Berkeley, EEUU) y varios colegas han construido un modelo clásico de la máquina de D-Wave que explica todas sus ventajas “cuánticas” (sus suspuestas correlaciones cuánticas no locales entre cubits lejanos). Un modelo (clásico) de campo medio efectivo que aproxima el algoritmo de recocido cuántico. Malas noticias para D-Wave que pronto verá como se cae su castillo de naipes. El artículo técnico es Seung Woo Shin, Graeme Smith, John A. Smolin, Umesh Vazirani, “How “Quantum” is the D-Wave Machine?,” arXiv:1401.7087 [quant-ph], 28 Jan 2014.

En el nuevo modelo clásico, cada cubit en la máquina de D-Wave se reemplaza por un imán cuya dirección está en el plano XZ; el acoplo entre cubits se simula por una interacción dipolo-dipolo entre los imanes vecinos; y el efecto del recocido cuántico se simula mediante un campo magnético externo cuya intensidad se atenúa. Lo más interesante del nuevo modelo clásico no es que simula las correlaciones “cuánticas” no locales observadas en la máquina de D-Wave, sino que además muestra que su comportamiento está controlado por un número pequeño de cubits “efectivos” llamados supernodos (que determinan el número de puntos de equilibrio del modelo). El algoritmo “cuántico” con 108 cubits publicitado el año pasado por D-Wave (parte izquierda de la figura) equivale a un algoritmo clásico con sólo 16 supernodos (parte derecha de dicha figura).

Actualidad Informática. El modelo clásico del ordenador supuestamente cuántico de D-Wave. Rafael Barzanallana

Ampliar en:  La Ciencia de la Mula Francis

Plataforma de silicio para ordenadores cuánticos

Actualidad Informática. Plataforma de silicio para ordenadores cuánticos. Rafael Barzanallana. UMU

Un equipo de ingenieros australianos de la Universidad de Nueva Gales del Sur (UNSW) ha demostrado un bit cuántico basado en el núcleo de un átomo de silicio, que promete grandes mejoras para procesamiento  de datos en ultra poderosas computadoras cuánticas del futuro.

Los bits cuánticos o cubits, son los bloques de construcción de ordenadores cuánticos, que ofrecerán enormes ventajas para la búsqueda en bases de datos extensas, ¡ cifrado moderno y modelado de sistemas a escala atómica, tales como moléculas biológicas y f?macos.

El primer resultado, que ha sido publicado en la revista Nature el 18 de abril, muestra como estas máquinas suponen un paso más, que describe cómo se almacena y se recupera  información mediante el espín  magnético de un núcleo.

«Hemos adaptado la tecnología de resonancia magnética nuclear, comúnmente conocida por su aplicación en el análisis químico y la imaginería por resonancia magnética, para el control y lectura del espín nuclear de un átomo en tiempo real», dice el Profesor Andrea Morello de la Escuela de Ingeniería Eléctrica y Telecomunicaciones en UNSW.

El núcleo de un átomo de fósforo es un imán muy débil, que puede apuntar en dos sentidos naturales, ya sea «arriba» o «abajo». En el  extraño mundo cuántico, el imán puede existir en dos estados al mismo tiempo – una característica conocida como superposición cuántica.

Las posiciones naturales son equivalentes al «cero» y «uno» de un código binario, tal como se utiliza en los ordenadores clásicos. En este experimento, los investigadores controlaron la dirección del núcleo, en efecto, «escribir» un valor en su espín, y luego «leer» el valor de salida – convirtiendo el núcleo en un cubit en  funcionamiento.

«Logramos una fidelidad de lectura del 99,8 %, lo que establece un nuevo punto de referencia para la exactitud de cubit en dispositivos de estado sólido», dice el profesor Andrew  Dzurak, quien también es director del Fondo Nacional de fabricación australiana en UNSW, donde se hicieron dispositivos.

La precisión de los cubits de espín nuclear del equipo de la UNSW hace que muchos lo consideren como el mejor bit cuántico actual – un solo átomo en una trampa electromagnética dentro de una cámara de vacío. El desarrollo de esta tecnología conocida como «trampa de iones» fue galardonado con el Premio Nobel 2012 de Física.

Vídeo

Fuente: PHYS.ORG

Related Posts with Thumbnails

Calendario

noviembre 2024
L M X J V S D
« Nov    
 123
45678910
11121314151617
18192021222324
252627282930  

Spam

Otros enlaces

  • Enlaces

    Este blog no tiene ninguna relación con ellos, ni los recomienda.


  • Paperblog

    autobus las palmas aeropuerto cetona de frambuesa