En el siglo cuarto, los romanos construyeron un vaso de vidrio especial, la copa de Lycurgus, que cambia de color dependiendo de qué manera la luz brilla a través de él. El vidrio está hecho de plata finamente molida y polvo de oro que produce un efecto de dicroismo, que cambia el color del oro. Aunque los creadores de la copa de Licurgo probablemente no conocían el mecanismo responsable de que el vidrio cambie de color, hoy en día los científicos reconocen el mecanismo de resonancia de plasmones de superficie, y es un fenómeno que continua manteniendo gran interés científico.
En un nuevo estudio publicado en las Actas de la Academia Nacional de Ciencias, Yunuen Montelongo, y colaboradores., en la Universidad de Cambridge en el Reino Unido, han usado resonancia de plasmones de superficie como una nueva manera de construir hologramas. Al igual que en la copa de Lycurgus, los nuevos hologramas pueden cambiar de color debido a la dispersión de luz por nanopartículas de plata de tamaños y formas específicas. Debido a su capacidad de crear simultáneamente dos colores y almacenar cantidades de información, los nuevos hologramas podría tener aplicaciones en pantallas 3D y dispositivos de almacenamiento de información, entre otros.
«Este experimento se inspira en las propiedades ópticas únicas mostradas por la copa de Lycurgus,» «Esta excepciona pieza cambia de color de acuerdo a la posición de la fuente de luz. Iluminada de un lado se ve verde, si está iluminado del otro se ve roja. Además, en contraste con los efectos dicroicos producidas por algunas cristales, como ópalos preciosos, los efectos coloridos de esta taza tienen poca dependencia de la posición del observador. De hecho, el dicroísmo encontrado en la copa tiene origen diferente de los cristales y el ‘efecto plasmónico’ no se ha observado en materiales que se encuentran de forma natural».
Aunque hay varias maneras diferentes de construir hologramas, casi todos los hologramas tradicionales son de un solo color, y los hologramas multicolor hacen que existan limitaciones. Por ejemplo, no existe una metodología que pueda producir hologramas multicolor de una superficie.
Aquí, los investigadores demostraron que es factible construir hologramas multicolor de un solo plano. Los nuevos hologramas consisten en el diseño de precisión de nanopartículas de plata sobre un patrón de sustrato.
Una diferencia clave en los nuevos hologramas es el menor tamaño de las franjas de difracción, que controlan la interferencia de la onda de luz. En hologramas tradicionales, estas franjas son más grandes que la mitad de la longitud de onda de la luz. En contraste, las franjas están aquí reemplazado con nanopartículas de menos de la mitad de la longitud de onda de la luz. Los investigadores mostraron que la difracción de banda estrecha,que crea los colores, es producida por la dispersión óptica plasmónica-mejorada de las nanoestructuras.
La sublongitud de onda ofrece algunas ventajas. Por ejemplo, dos tipos diferentes de nanopartículas plasmónicas se pueden multiplexar, o combinar pero no acoplar, a distancias de sublongitud de onda. Mediante el uso de nanopartículas de plata con diferentes formas y tamaños, los investigadores pudieron controlar los colores.
Además de proporcionar múltiples colores, la multiplexación de nanopartículas tiene la ventaja de aumentar los límites del ancho de banda de la información. Los investigadores demostraron que cada nanopartícula porta información independiente, de forma que la polarización y la longitud de onda, pueden ser controladas de forma simultánea. Con doble cantidad de nanopartículas, la cantidad total de la información binaria almacenada puede superar los límites tradicionales de la difracción.
«Se ha demostrado que nanopartículas con propiedades resonantes pueden ser desacopladas a distancias de sublongitud de onda, de forma que los campos electromagnéticas tienen su interacción mínima», dijo Montelongo. «El dispositivo presentado demuestra que estas nanopartículas pueden almacenar y transferir información independiente más allá de los límites de difracción, a diferencia de las estructuras no resonantes. Debido a este fenómeno natural, ha sido posible mostrar, por primera vez, un holograma con imágenes a color en 180 grados. Esta proyección es tan amplia que no es posible mostrarla en un plano, y se debe usar una esfera de difusión «.
Estas características hacen que el nuevo holograma sea muy atractivo para aplicaciones futuras.
«Además de la aplicación obvia en la sustitución de los típicos hologramas de arco iris de tarjetas de crédito y los elementos de seguridad, este fenómeno puede ser usado para la proyección de imágenes en esferas, lo cual hasta ahora no se ha logrado con la óptica convencional», dijo el coautor Calum Williams en la Universidad de Cambridge. «Por otra parte, este concepto se puede aplicar como base para producir pantallas dinámicas a color en tres dimensiones. En el área de la informática, estas configuraciones holográficas podrían almacenar información en áreas de sublongitud de onda. Esto significa que dispositivos de almacenamiento de datos ópticos como CD, DVD o Blu ray podrían expandir sus límites de almacenamiento «.
Fuente: http://phys.org/news/2014-08-hologram-plasmonic-nanoparticles-large-amounts.html#jCp
Yunuen Montelongo, et al. «Plasmonic nanoparticle scattering for color holograms.» PNAS Early Edition. DOI: 10.1073/pnas.1405262111
Ampliar en: Boletines UAM
Un nuevo tipo de transistor basado en el funcionamiento del sistema nervioso, puede facilitar el reconocimiento de imagen y realización de otras tareas complejas con las nuevas generaciones de ordenadores, según estudios publicados el viernes.
El transistor, en base a un circuito electrónico se puede limitar o no para transmitir una señal, interpretadas como una respuesta «sí» o «no». Como decir si un píxel de una imagen es negro o blanco.
Este tipo de respuesta «congelada» es poco adecuado para tareas complejas, como el tratamiento o el reconocimiento de imagen, según Dominique Vuillaume, investigador en el Instituto de Electrónica, Microelectrónica y Nanotecnología en Lille (IEMN-CNRS).
El nuevo tipo de transistor de que ha desarrollado con sus colaboradores del CNRS y el CEA introduce una mayor flexibilidad, plasticidad, imitando el funcionamiento de los sistemas biológicos, tales como las redes neuronales.. Estas células nerviosas puedan comunicarse con sus vecinas a través de miles de puntos de conexión llamados sinapsis.
El nuevo tipo de transistor debe conducir a una «respuesta colectiva» como la que puede proporcionar una red neuronal integrando de múltiples informaciones, según Vuillaume.
Esto da lugar a un «sistema con una flexibilidad tal que puede ser programado por el aprendizaje».
El transistor llamado NOMFET (nanopartículas orgánicas Memoria Transistor) combina una molécula que contiene carbono, el pentaceno, actuando como semiconductor, y nanopartículas de oro que los electrones pueden atrapar. Estas nanopartículas son capaces de modular la señal electrónica y así imitar la plasticidad de las sinapsis en el cerebro.
NOMFET por sí solo podría reemplazar siete transistores basados en CMOS de silicio actualmente necesarios para imitar la plasticidad de una sinapsis biológica, lo que resulta en ahorro de espacio, según un estudio publicado el viernes en la revista Advanced Functional Materials.
«El objetivo de estos sistemas como las redes neuronales no es necesariamente competir con los chips de silicio en los ordenadores, las aplicaciones no son todas iguales», señala el Sr. Vuillaume. Esto «sirve para hacer frente a una gran cantidad de información en paralelo», como reconocimiento de imagen, pero «no vamos a hacer computación científica con él», concluye.
Fuente: France24
________________
Enlaces de interés:
desarrollo web
trabajar en casa