A medida que nos acercamos a los límites de miniaturización de la electrónica convencional, las alternativas a los transistores basados en silicio – los bloques de construcción de la multitud de dispositivos electrónicos actuales – están siendo buscadas acaloradamente.
Inspirados por la forma en los organismos vivos han evolucionado en la naturaleza para realizar tareas complejas con notable facilidad, un grupo de investigadores de la Universidad de Durham en el Reino Unido y la Universidad de São Paulo-USP en Brasil está explorando métodos similares, «evolutivos», para crear dispositivos de procesamiento de información .
En el Journal of Applied Physics, de AIP Publishing, el grupo describe el uso de compuestos de nanotubos de carbono de pared simple (SWCNT) como un material para la informática «no convencional». Mediante el estudio de las propiedades mecánicas y eléctricas de los materiales, descubrieron una correlación entre la concentración de SWCNT/viscosidad/conductividad y la capacidad computacional del compuesto.
«En lugar de crear circuitos de matrices de componentes discretos (transistores en electrónica digital), nuestro trabajo se basa en un material desordenado al azar y luego entrena al material para producir un resultado deseado», dijo Mark K. Massey, investigador asociado de la Facultad de Ingeniería y Ciencias de la Computación en la Universidad de Durham.
Este campo de investigación emergente que se conoce como «evolution-in-materio«, término acuñado por Julian Miller de la Universidad de York en el Reino Unido ¿Qué es exactamente? Un campo interdisciplinario combina la ciencia de materiales, la ingeniería y la informática. Aunque todavía está en sus primeras etapas, el concepto ya ha demostrado que mediante el uso de un enfoque similar a la evolución natural, los materiales pueden ser entrenados para imitar los circuitos electrónicos – sin necesidad de diseñar la estructura del material de una manera específica.
«El material que utilizamos en nuestro trabajo es una mezcla de nanotubos de carbono y polímeros, lo que crea una estructura eléctrica compleja«, explicó Massey. «Cuando se aplican voltajes (estímulos) en puntos de la sustancia, sus propiedades eléctricas cambian. Cuando se aplican al material señales correctas, puede ser entrenado o ‘evolucionado’ para realizar una función útil«.
Mientras que el grupo no espera ver a su método competir con los ordenadores de silicio de alta velocidad, podría llegar a ser una tecnología complementaria. «Con más investigación, podría conducir a nuevas técnicas para la fabricación de dispositivos electrónicos», señaló. El método puede encontrar aplicaciones en el ámbito de «procesado de señales analógicas o de baja potencia, dispositivos de bajo costo en el futuro«.
Más allá de seguir la metodología actual de «evolution-in-materio«, la siguiente etapa del grupo será investigar los dispositivos en evolución como parte de la fabricación de material de evolución «hardware-in-the-loop«. «Este enfoque emocionante podría dar lugar a nuevas mejoras en el campo de la electrónica evolucionable», dijo Massey.
La investigación del grupo es parte de Nanoscale Engineering for Novel Computation using Evolution project, que está financiado por la Unión Europea.
Fuente: M.K. Massey, A. Kotsialos, F. Qaiser, D.A. Zeze, C. Pearson, D. Volpati, L. Bowen and M.C. Petty. Computing with Carbon Nanotubes: Optimization of Threshold Logic Gates using Disordered Nanotube/Polymer Composites. Journal of Applied Physics, April 7, 2015 DOI: 10.1063/1.4915343
Gracias a las propiedades flexibles y robustas de los nanotubos de carbono, investigadores han fabricado transistores que se pueden enrollar, plegar y estirarse. Ahora, un equipo de Japón ha hecho un transistor de nanotubos de carbono que puede ser arrugado como un trozo de papel, sin degradación de sus propiedades eléctricas. El nuevo transistor es el más flexible que no experimenta pérdida de rendimiento.
Los investigadores, Shinya Aikawa y coautores de la Universidad de Tokio y la Universidad de Ciencias de Tokio (Japón) han publicado su estudio en una reciente edición de Applied Physics Letters.
«Lo más importante es que la electrónica actual podría ser útil en lugares o situaciones que antes no era posible», dijo el coautor Shigeo Maruyama, un profesor de ingeniería mecánica en la Universidad de Tokio, a PhysOrg.com. «Nuestro dispositivo es tan flexible y deformable, que podría ser pegado en cualquier lugar. Esto podría conducir a dispositivos electrónicos activos que se aplican como un adhesivo o un vendaje adhesivo, así como a la electrónica de portátiles «.
A diferencia de otros transitores de efecto de campo (FET), el nuevo FET es único en que todos los canales y los electrodos están hechos de nanotubos de carbono (CNT), mientras que el sustrato está hecho de de polialcohol vinílico (PVA) altamente flexible y transparente. Anteriormente, la mayoría de los FETs flexible, transparentse han utilizado oro u óxido de indio y estaño como electrodos. Sin embargo, el oro disminuye la transparencia de los dispositivos mientras que el óxido de indio y estaño es frágil y limita la flexibilidad. FET recientes han sido compuestos enteramente por nanotubos de carbono, pero hasta ahora estos dispositivos se han construido en substratos de plástico gruesos, lo que limita su flexibilidad.
Después de modelar los componentes del dispositivo utilizando fotolitografía estándar y laminando con el PVA, el espesor final del nuevo CNT-FET fue de aproximadamente 15 micras. Este hecho de delgadez del dispositivo altamente flexible, se ha verificado con pruebas que muestran que el transistor terminado podría soportar un radio de curvatura de un mm con casi ningún cambio en las propiedades eléctricas. Aunque otros transistores flexibles se han desarrollado con radios tan bajos como 0,1 mm, el nuevo transistor es el más flexible que no experimenta una degradación del rendimiento.
Después de someter el transistor a 100 ciclos de arrugado, los investigadores observaron una ligera disminución en la corriente de fuga máxima, que puede ser debido a algunas conexiones de trazos en la red CNT. Sin embargo, la disminución mínima en corriente de drenaje máxima, lo que se estabiliza después de aproximadamente 30 ciclos, no afecta a la transconductancia global, que no fue afectada por la flexión repetida.
Ampliar en: Shinya Aikawa, et al. “Deformable transparent all-carbon-nanotube transistors.” Applied Physics Letters 100, 063502 (2012). DOI: 10.1063/1.3683517
Pantallas planas para televisores, ordenadores y otros dispositivos de pantalla grande pronto podrán mostrar imágenes brillantes y nítidas, mientras consumen muho menos energía, gracias a los transistores que utilizan nanotubos de carbono para suministrar corriente de una nueva manera.
Será como mínimo dentro de un par de años hasta que la tecnología, que se describe en Science del 29 de abril, se comercialice. Pero con el tiempo pueden ser más baratas, además de que duran más y consumen menos energía que las mejores pantallas de cristal líquido actuales.
La nueva tecnología emplea diodos orgánicos emisores de luz, u OLED, pequeñas películas delgadas que crean la luz en respuesta a la corriente eléctrica. Esta tecnología tiene varias ventajas sobre las tradicionales pantallas de cristal líquido – que no son retroiluminados-, por ejemplo, por lo que la oscuridad no se crea mediante el bloqueo de luz, sino por los diodos individuales que emiten menos luz. Lo cual ahorra energía.
Pero hacer que las pantallas OLED sean mucho más grandes que las de un teléfono celular inteligente ha sido problemático. Mientras que consumen menos energía en general, se precisa una descarga de corriente para arrancar cada píxel. Los transistores que proporcionan esta cantidad de corriente son voluminosos y ocupan un valioso espacio en la pantalla, además también requieren una construcción elaborada, cara y el rendimiento de píxeles que no son uniformes, es un problema que crece con el tamaño de la pantalla, dice el coautor del estudio Andrew Rinzler de la Universidad de Florida (EE.UU.).
Para eludir estos problemaso, Rinzler y sus colegas utilizaron una red de nanotubos de carbono para gestionar la corriente eléctrica. La capa de nanotubos es porosa, dejando pasar la luz, por lo que el transistor y las capas de emisión de luz pueden ser apilados verticalmente en vez de situarse de lado a lado, con el consiguiente ahorro. El 98 por ciento del dispositivo emite luz. Eso no es poca cosa, dice el nanotecnólogo Chongwu Zhou de la Universidad del Sur de California en Los Ángeles.
«Esta es una maravillosa pieza de trabajo», dice Zhou. «Se reúnen un montón de innovaciones.»
Fuente: ScienceNews
Un nuevo tipo de transistor controlado por la sustancia química que proporciona la energía para elmetabolismo de
nuestras células pueda ser un gran paso hacia el diseño de prótesis que puedan ser conectados directamente al sistema nervioso.
Los transistores son los bloques fundamentales de construcción de aparatos electrónicos, por lo que encontrar formas de controlarlos con las señales biológicas podría proporcionar una vía hacia la integración de la electrónica con el cuerpo.
AlAleksandr Noy en el Laboratorio Nacional Lawrence Livermore en California (EE.UU.) y sus colegas optaron por controlar un transistor con adenosina trifosfato (ATP) – el combustible molecular que se encuentra en casi todas las células vivas.
El nuevo transistor se compone de un nanotubo de carbono, que se comporta como un semiconductor, reduciendo la brecha (gap) entre dos electrodos de metal y recubierto con una capa de polímero aislante que sale de la sección central del nanotubo, dejándola expuesta. El dispositivo después se cubre de nuevo, esta vez con una bicapa lipídica similar a las que forman las membranas que rodean las células de nuestro cuerpo.
El equipo aplicó entonces un voltaje a través de los electrodos del transistor y se llenó el dispositivo con una solución que contiene ATP y los iones sodio y potasio.. Esto provocó que una corriente fluya a través de los electrodos – y cuanto mayor era la concentración de ATP, fluía corriente más intensa.
El dispositivo responde de esta manera porque la bicapa lipídica incorpora una proteína que, cuando se expone a ATP, actúa como una bomba de iones, transportando iones de sodio y potasio a través de la membrana.
«La proteína de bomba de iones es un elemento absolutamente fundamental de este dispositivo», dice Noy.» «Cada ciclo, se hidroliza una molécula de ATP y se mueven tres iones de sodio en un sentido y dos iones de potasio en el opuesto.Esto da lugar a una red de bombeo de una carga a través de la membrana hacia el nanotubo.
La acumulación de iones crea un campo eléctrico alrededor de la porción expuesta de los nanotubos semiconductores, aumentando su conductividad en proporción a la intensidad del campo. Cuando el suministro de ATP se reduce, los iones se fugan al otro lado de la membrana y el flujo de corriente a través del transistor cae.
Noy afirma que este es el primer ejemplo de un sistema bioelectrónico realmente integrado. «Espero que este tipo de tecnología pueda usarse para construir interfaces bioelectrónicas para permitir una mejor comunicación entre organismos vivos y máquinas.»
Itamar Willner en la Universidad Hebrea de Jerusalén en Israel piensa que la tecnología es muy prometedora. «La belleza del sistema se refleja en el hecho de que la energía mecánica en la nanoescala [del movimiento de los iones] se transforma en electricidad.» He suggests it could be used to develop sensors to monitor intracellular metabolism. Sugiere que podría ser utilizado para desarrollar sensores para monitorizar el metabolismo intracelular.
Publicado en: Nano Letters, DOI: 10.1021/nl100499x