Una colaboración de investigación entre la Universidad de Osaka y el Instituto de Ciencia y Tecnología de Nara utilizó por primera vez la microscopía de barrido en túnel (STM) para crear imágenes de superficies laterales atómicamente planas de cristales de silicio 3D. Este trabajo ayuda a los fabricantes de semiconductores a seguir innovando y, al mismo tiempo, produce chips de ordenador más pequeños, rápidos y eficientes energéticamente para ordenadores y teléfonos inteligentes.
Nuestros ordenadores y teléfonos inteligentes están cargados con millones de pequeños transistores. La velocidad de procesamiento de estos dispositivos ha aumentado dramáticamente con el paso del tiempo a medida que aumenta el número de transistores que pueden caber en un solo chip de ordenador. Basado en la Ley de Moore, el número de transistores por chip se duplicará cada dos años, y en esta área parece que se mantiene. Para mantener este ritmo de rápida innovación, los fabricantes de ordenadores están continuamente en busca de nuevos métodos para hacer que cada transistor sea cada vez más pequeño.
Los microprocesadores actuales se fabrican añadiendo patrones de circuitos a las obleas de silicio plano. Una forma novedosa de crear más transistores en el mismo espacio es fabricar estructuras 3D. Los transistores de efecto de campo de tipo aleta (FET) se denominan así porque tienen estructuras de silicio parecidas a las aletas que se extienden hacia el aire, fuera de la superficie del chip. Sin embargo, este nuevo método requiere un cristal de silicio con superficies superiores y laterales perfectamente planas, en lugar de sólo la superficie superior, como ocurre con los dispositivos actuales. El diseño de la próxima generación de chips requerirá nuevos conocimientos sobre las estructuras atómicas de las superficies laterales.
Ahora, investigadores de la Universidad de Osaka y del Instituto de Ciencia y Tecnología de Nara informan que han utilizado STM para visualizar por primera vez la superficie lateral de un cristal de silicio. STM es una técnica poderosa que permite ver la ubicación de los átomos de silicio individuales. Al pasar una punta afilada muy cerca de la muestra, los electrones pueden saltar a través de la separación y crear una corriente eléctrica. El microscopio monitoreó esta corriente y determinó la ubicación de los átomos en la muestra.
«Nuestro estudio es un gran primer paso hacia la evaluación de transistores con resolución atómica diseñada para obtener formas tridimensionales», dice la coautora del estudio Azusa Hattori.
Para hacer que las superficies laterales sean lo más suaves posible, los investigadores primero trataron los cristales con un proceso llamado ataque de iones reactivos. El coautor Hidekazu Tanaka dice: «Nuestra habilidad de mirar directamente las superficies laterales usando STM demuestra que podemos hacer estructuras artificiales en 3D con superficies atómicas casi perfectas».
Ampliar en: Solid State TECHNOLOGY
Científicos de IBM y el German Center for Free-Electron Laser Science (CFEL) han construido la unidad más pequeña del mundo de almacenamiento magnético de datos. Se utilizan sólo doce átomos por bit, la unidad básica de información, y almacena un byte (octeto) entero (8 bits) en tan sólo 96 átomos. Un disco duro moderno, en comparación, todavía necesita más de la mitad de mil millones de átomos por byte.
El equipo presentó su trabajo en la revista Science el 13 de enero de 2012. CFEL es una empresa conjunta del centro de investigación Deutsches Elektronen-Synchrotron DESY, en Hamburgo, Max-Planck-Society (MPG) y la Universidad de Hamburgo. «Con CFEL los socios han establecido una institución innovadora en el campus de DESY, investigaciones de alto nivel a través de un amplio espectro de disciplinas», dice el director de investigación de DESY Edgar Weckert.
Los datos de la unidad de almacenamiento nanométrica se construyeron átomo por átomo con la ayuda de un microscopio de efecto túnel (STM) en el Almaden Research Center de IBM en San José, California (EE.UU.). Los investigadores construyeron un patrón regular de los átomos de hierro, alinearlas en filas de seis átomos cada uno. Dos filas son suficientes para almacenar un bit. Un byte correspondiente consta de ocho pares de filas átomos. Se utiliza sólo un área de cuatro por 16 nanómetros (un nanómetro es una millonésima de milímetro). «Esto corresponde a una densidad de almacenamiento que es cien veces mayor en comparación con un disco duro moderno», explica Sebastián Loth de CFEL, autor principal del artículo publicado en Science.
Los datos se escriben y se leen de la unidad de almacenamiento con la ayuda de un STM. Los pares de filas de átomos tienen dos posibles estados magnéticos, en representación de los dos valores ‘0 ‘y ‘1’ de un bit clásico. Un pulso eléctrico en la punta del STM invierte la configuración magnética de uno a otro. Un pulso más débil permite leer la configuración, aunque los imanes nanométricos actualmente sólo son estables a una temperaturade menos 268 grados celsius (cinco grados Kelvin). «Nuestro trabajo va mucho más allá de la tecnología actual de almacenamiento de datos», dice Loth. Los investigadores esperan que las matrices de unos 200 átomos han de ser estable a temperatura ambiente. Aún tendrá que pasar cierto tiempo antes de que los imanes atómicos pueden ser utilizados en el almacenamiento de datos.
Por primera vez, los investigadores han logrado dar trabajo a un tipo especial de magnetismo para el almacenamiento de datos, llamado antiferromagnetismo. A diferencia del ferromagnetismo, que se utiliza en los discos duros convencionales, los espines de los átomos vecinos dentro del material antiferromagnético son opuestos en alineación, haciendo que el material magnético sea neutro a un nivel superior. Esto significa que las filas de átomos antiferromagnéticos pueden tener una separación mucho más cercana, sin interferir magnéticamente entre sí. De este modo, el científico logró empaquetar los bits a sólo un nanómetro de distancia.
«En cuanto a la reducción de componentes electrónico, queríamos saber si esto se puede conducir en el reino de los átomos individuales», explica Loth. Pero en vez de componentes existentes en el equipo optó por el camino contrario: «A partir de las cosas más pequeñas – los átomos individuales – hemos construido dispositivos de almacenamiento de datos de un átomo a la vez», dice el miembro del personal de investigación de IBM Andreas Heinrich. La precisión que se requiere está dominada por solo unos pocos grupos de investigación en todo el mundo .
«Hemos probado que tan grande que tenemos que construir nuestra unidad para alcanzar el reino de la física clásica», explica Loth, quien se mudó de IBM para CFEL hace cuatro meses. Doce átomos surgió como mínimo con los elementos utilizados. «Por debajo de este umbral, los efectos cuánticos borrar la información almacenada.» Si estos efectos cuánticos de alguna manera pueden ser utilizados para una densidad superior de almacenamiento de datos es actualmente un tema de intensa investigación.
Con sus experimentos, el equipo no sólo han construido la más pequeña unidad de almacenamiento magnético de datos, s ino que también han creado un banco de pruebas ideal para la transición desde la clásica a la física cuántica. «Hemos aprendido a controlar los efectos cuánticos a través de la forma y tamaño de las filas átomo de hierro», explica Loth, líder del grupo de investigación Max Planck research group ‘dynamics of nanoelectric systems’ en CFEL en Hamburgo y el Max-Planck-Institute for Solid State Research en Stuttgart, Alemania. «Ahora podemos utilizar esta capacidad para investigar cómo actúa la mecánica cuántica. Lo que separa a los imanes cuánticos de los imanes clásicos. ¿Cómo se comporta un imán en la frontera entre ambos mundos? Estas son preguntas interesantes que pronto podrían ser respondidas».
Un nuevo laboratorio de CFEL ofrece condiciones ideales para esta investigación, que permitirá a Loth dar seguimiento a estas preguntas. «Con Sebastián Loth, uno de los principales científicos del mundo en materia de tiempo de resolverse la microscopía de efecto túnel se ha unido a CFEL», destaca el coordinador de investigación CFEL Ralf Köhn. «Esto se complementa perfectamente con nuestra experiencia existentes para la investigación de la dinámica de los sistemas atómicos y moleculares.»
Fuente: S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, A. J. Heinrich. Bistability in Atomic-Scale Antiferromagnets. Science, 2012; 335 (6065): 196 DOI: 10.1126/science.1214131
Lo último en «chips» de memoria del futuro, codificar bits en átomos individuales, una capacidad demostrada recientemente para los átomos de hierro en una investigación en «IBM’s Almaden Research Center» en San José, California (EE.UU.), que dio a conocer una nueva técnica de impulsos para los microscopios de efecto túnel (STM ).
Pulsos-STM con un rendimiento de nanosegundos en tiempo de resolución, es un requisito para el diseño de chips de memoria a escala atómica, paneles solares y los ordenadores cuánticos del futuro.
«Mi esperanza es que podamos generar una gran serie con resolución temporal de nanosegundos y en escala espacial resolución atómica con los STM,» dijo Andreas Heinrich, un físico de IBM en el laboratorio Almadén.
STM, fue inventado por IBM en la década de 1980, se han convertido en el caballo de batalla de la industria de los materiales semiconductores. Su resolución se extiende hasta el final de la escala atómica, lo que permite examinar átomos individuales. Por desgracia, los STM son lentos en hacer mediciones tan delicadas. Ahora IBM ha puesto a punto una nueva técnica STMde pulsos que lleva a la capacidad de medir el tiempo a la par con la precisión nanométrica como medidas de distancia.
La técnica de IBM trabaja en una manera similar a como trabaja una láser pulsado. En primer lugar una señal de la bomba se introduce en el material de la punta del STM para poner spin electrónico del átomo en un estado conocido, después de un período de espera una sonda de señal más pequeña es utilizada para hacer una medición. Repitiendo el proceso, cada vez que se amplía el tiempo entre los pulsos por unos pocos nanosegundos, el proceso es capaz de medir con exactitud el tiempo de relajación del spin electrónico o el tiempo que un bit de información es retenido por un solo átomo de hierro.
Hoy en día los «chips» de memoria DRAM deben actualizar (refrescar) sus bits cada 50 milisegundos o menos, pero utilizando la nueva técnica STM de pulsos, IBM ha observado que los átomos individuales de hierro podrían ser refrescados cada 250 nanosegundos aproximadamente, alrededor de 200000 veces más rápido.
«Ahora sabemos la respuesta a la pregunta:» ¿Qué pasa cuando tratas de almacenar información en un solo átomo de hierro? Y esperamos que en el futuro a largo plazo podemos hacer un progreso similar en respuesta a las preguntas acerca de la eficiencia de células solares y los ordenadores cuánticos «, dijo Heinrich.
La técnica STM de pulsos se podría adaptar a la medición de la eficiencia de células solares individuales mediante el uso de un pulso de luz como la bomba para estimular las células solares y entonces realizando la exploración con la punta del STM. Heinrich también espera poder revelar el funcionamiento interno de las puertas lógicas de un ordenador cuántico, utilizando la técnica de STM de pulsos.
«Si podemos poner bits cuánticos en superficies tal que tienen que interactuar unos con otros, entonces, básicamente, vamos a mostrar una nueva forma de computación cuántica realizada realmente en la escala atómica. Ésa es mi visión del futuro de la mecánica cuántica», dijo Heinrich .
Fuente: EETimes
_____________
Enlaces relacionados:
– Nuevo material que supone avance en la computación cuántica